31,753 research outputs found

    Large-Scale Online Semantic Indexing of Biomedical Articles via an Ensemble of Multi-Label Classification Models

    Full text link
    Background: In this paper we present the approaches and methods employed in order to deal with a large scale multi-label semantic indexing task of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge of 2014. Methods: The main contribution of this work is a multi-label ensemble method that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ's super-set, the PubMed articles collection) and the proper adaptation of the algorithms used to deal with this challenging classification task. Results: The ensemble method we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. During the BioASQ 2014 challenge we obtained the first place during the first batch and the third in the two following batches. Our success in the BioASQ challenge proved that a fully automated machine-learning approach, which does not implement any heuristics and rule-based approaches, can be highly competitive and outperform other approaches in similar challenging contexts

    APPLICATION OF RANDOM INDEXING TO MULTI LABEL CLASSIFICATION PROBLEMS: A CASE STUDY WITH MESH TERM ASSIGNMENT AND DIAGNOSIS CODE EXTRACTION

    Get PDF
    Many manual biomedical annotation tasks can be categorized as instances of the typical multi-label classification problem where several categories or labels from a fixed set need to assigned to an input instance. MeSH term assignment to biomedical articles and diagnosis code extraction from medical records are two such tasks. To address this problem automatically, in this thesis, we present a way to utilize latent associations between labels based on output label sets. We used random indexing as a method to determine latent associations and use the associations as a novel feature in a learning-to-rank algorithm that reranks candidate labels selected based on either k-NN or binary relevance approach. Using this new feature as part of other features, for MeSH term assignment, we train our ranking model on a set of 200 documents, test it on two public datasets, and obtain new state-of-the-art results in precision, recall, and mean average precision. In diagnosis code extraction, we reach an average micro F-score of 0.478 based on a large EMR dataset from the University of Kentucky Medical Center, the first study of its kind to our knowledge. Our study shows the advantages and potential of random indexing method in determining and utilizing implicit relationships between labels in multi-label classification problems

    Overview of the ImageCLEF 2015 medical classification task

    Get PDF
    This articles describes the ImageCLEF 2015 Medical Clas-sification task. The task contains several subtasks that all use a dataset of figures from the biomedical open access literature (PubMed Cen-tral). Particularly compound figures are targeted that are frequent inthe literature. For more detailed information analysis and retrieval it isimportant to extract targeted information from the compound figures.The proposed tasks include compound figure detection (separating com-pound from other figures), multi–label classification (define all sub typespresent), figure separation (find boundaries of the subfigures) and modal-ity classification (detecting the figure type of each subfigure). The tasksare described with the participation of international research groups inthe tasks. The results of the participants are then described and analysedto identify promising techniques

    Deep Neural Networks for Multi-Label Text Classification: Application to Coding Electronic Medical Records

    Get PDF
    Coding Electronic Medical Records (EMRs) with diagnosis and procedure codes is an essential task for billing, secondary data analyses, and monitoring health trends. Both speed and accuracy of coding are critical. While coding errors could lead to more patient-side financial burden and misinterpretation of a patient’s well-being, timely coding is also needed to avoid backlogs and additional costs for the healthcare facility. Therefore, it is necessary to develop automated diagnosis and procedure code recommendation methods that can be used by professional medical coders. The main difficulty with developing automated EMR coding methods is the nature of the label space. The standardized vocabularies used for medical coding contain over 10 thousand codes. The label space is large, and the label distribution is extremely unbalanced - most codes occur very infrequently, with a few codes occurring several orders of magnitude more than others. A few codes never occur in training dataset at all. In this work, we present three methods to handle the large unbalanced label space. First, we study how to augment EMR training data with biomedical data (research articles indexed on PubMed) to improve the performance of standard neural networks for text classification. PubMed indexes more than 23 million citations. Many of the indexed articles contain relevant information about diagnosis and procedure codes. Therefore, we present a novel method of incorporating this unstructured data in PubMed using transfer learning. Second, we combine ideas from metric learning with recent advances in neural networks to form a novel neural architecture that better handles infrequent codes. And third, we present new methods to predict codes that have never appeared in the training dataset. Overall, our contributions constitute advances in neural multi-label text classification with potential consequences for improving EMR coding

    Multi-label classification for biomedical literature: an overview of the BioCreative VII LitCovid Track for COVID-19 literature topic annotations

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic has been severely impacting global society since December 2019. The related findings such as vaccine and drug development have been reported in biomedical literature—at a rate of about 10 000 articles on COVID-19 per month. Such rapid growth significantly challenges manual curation and interpretation. For instance, LitCovid is a literature database of COVID-19-related articles in PubMed, which has accumulated more than 200 000 articles with millions of accesses each month by users worldwide. One primary curation task is to assign up to eight topics (e.g. Diagnosis and Treatment) to the articles in LitCovid. The annotated topics have been widely used for navigating the COVID literature, rapidly locating articles of interest and other downstream studies. However, annotating the topics has been the bottleneck of manual curation. Despite the continuing advances in biomedical text-mining methods, few have been dedicated to topic annotations in COVID-19 literature. To close the gap, we organized the BioCreative LitCovid track to call for a community effort to tackle automated topic annotation for COVID-19 literature. The BioCreative LitCovid dataset—consisting of over 30 000 articles with manually reviewed topics—was created for training and testing. It is one of the largest multi-label classification datasets in biomedical scientific literature. Nineteen teams worldwide participated and made 80 submissions in total. Most teams used hybrid systems based on transformers. The highest performing submissions achieved 0.8875, 0.9181 and 0.9394 for macro-F1-score, micro-F1-score and instance-based F1-score, respectively. Notably, these scores are substantially higher (e.g. 12%, higher for macro F1-score) than the corresponding scores of the state-of-art multi-label classification method. The level of participation and results demonstrate a successful track and help close the gap between dataset curation and method development. The dataset is publicly available via https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/ for benchmarking and further development
    • …
    corecore