5,047 research outputs found

    Detection of variance changes and mean value jumps in measurement noise for multipath mitigation in urban navigation

    Get PDF
    This paper studies an urban navigation filter for land vehicles. Typical urban-canyon phenomena as multipath and GPS outages seriously degrade positioning performance. To deal with these scenarios a hybrid navigation system using GPS and dead-reckoning sensors is presented. This navigation system is complemented by a two-step detection procedure that classifies outliers according to their associated source of error. Two different situations will be considered in the presence of multipath. These situations correspond to the presence or absence of line of sight for the different GPS satellites. Therefore, two kinds of errors are potentially “corrupting” the pseudo-ranges, modeled as variance changes or mean value jumps in noise measurements. An original multiple model approach is proposed to detect, identify and correct these errors and provide a final consistent solution

    A Spectral Learning Approach to Range-Only SLAM

    Full text link
    We present a novel spectral learning algorithm for simultaneous localization and mapping (SLAM) from range data with known correspondences. This algorithm is an instance of a general spectral system identification framework, from which it inherits several desirable properties, including statistical consistency and no local optima. Compared with popular batch optimization or multiple-hypothesis tracking (MHT) methods for range-only SLAM, our spectral approach offers guaranteed low computational requirements and good tracking performance. Compared with popular extended Kalman filter (EKF) or extended information filter (EIF) approaches, and many MHT ones, our approach does not need to linearize a transition or measurement model; such linearizations can cause severe errors in EKFs and EIFs, and to a lesser extent MHT, particularly for the highly non-Gaussian posteriors encountered in range-only SLAM. We provide a theoretical analysis of our method, including finite-sample error bounds. Finally, we demonstrate on a real-world robotic SLAM problem that our algorithm is not only theoretically justified, but works well in practice: in a comparison of multiple methods, the lowest errors come from a combination of our algorithm with batch optimization, but our method alone produces nearly as good a result at far lower computational cost
    corecore