5,047 research outputs found
Detection of variance changes and mean value jumps in measurement noise for multipath mitigation in urban navigation
This paper studies an urban navigation filter for land vehicles. Typical urban-canyon phenomena as multipath and GPS outages seriously degrade positioning performance. To deal with these scenarios a hybrid navigation system using GPS and dead-reckoning sensors is presented. This navigation system is complemented by a two-step detection procedure that classifies outliers according to their associated source of error. Two different situations will be considered in the presence of multipath. These situations correspond to the presence or absence of line of sight for the different GPS satellites. Therefore, two kinds of errors are potentially “corrupting” the pseudo-ranges, modeled as variance changes or mean value jumps in noise measurements. An original multiple model approach is proposed to detect, identify and correct these errors and provide a final consistent solution
Computational intelligence approaches to robotics, automation, and control [Volume guest editors]
No abstract available
A Spectral Learning Approach to Range-Only SLAM
We present a novel spectral learning algorithm for simultaneous localization
and mapping (SLAM) from range data with known correspondences. This algorithm
is an instance of a general spectral system identification framework, from
which it inherits several desirable properties, including statistical
consistency and no local optima. Compared with popular batch optimization or
multiple-hypothesis tracking (MHT) methods for range-only SLAM, our spectral
approach offers guaranteed low computational requirements and good tracking
performance. Compared with popular extended Kalman filter (EKF) or extended
information filter (EIF) approaches, and many MHT ones, our approach does not
need to linearize a transition or measurement model; such linearizations can
cause severe errors in EKFs and EIFs, and to a lesser extent MHT, particularly
for the highly non-Gaussian posteriors encountered in range-only SLAM. We
provide a theoretical analysis of our method, including finite-sample error
bounds. Finally, we demonstrate on a real-world robotic SLAM problem that our
algorithm is not only theoretically justified, but works well in practice: in a
comparison of multiple methods, the lowest errors come from a combination of
our algorithm with batch optimization, but our method alone produces nearly as
good a result at far lower computational cost
- …
