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ABSTRACT

This paper studies an urban navigation filter for land vehicles.
Typical urban-canyon phenomena as multipath and GPS out-
ages seriously degrade positioning performance. To deal with
these scenarios a hybrid navigation system using GPS and dead-
reckoning sensors is presented. This navigation system is com-
plemented by a two-step detection procedure that classifies out-
liers according to their associated source of error. Two differ-
ent situations will be considered in the presence of multipath.
These situations correspond to the presence or absence of line
of sight for the different GPS satellites. Therefore, two kinds
of errors are potentially “corrupting” the pseudo-ranges, mod-
eled as variance changes or mean value jumps in noise mea-
surements. An original multiple model approach is proposed
to detect, identify and correct these errors and provide a final
consistent solution.

1. INTRODUCTION

Personal land navigation is becoming one of the most widely spread
global navigation satellite system (GNSS) application. In particu-
lar, vehicle navigation is nowadays part of many people’s daily life.
New navigation-based services are demanding higher precision so-
lutions. Different types of obstacles such as high buildings, trees or
tunnels, create an important degradation in the precision of the es-
timated position. In urban canyon scenarios two main problems are
to be considered: a partial or total outage in the satellite visibility,
and the lack of integrity in the received pseudo-range measurement.
Several approaches to cope with these problems are proposed within
the GNSS community. The first problem is commonly addressed by
complementing the satellite based navigation system with a dead-
reckoning approach [1]. The principle is to use advantageously the
redundancy of measurements. The second and most challenging
problem is mainly caused by the presence of multipath. This article
considers the different kind of errors affecting the received naviga-
tion signal in the presence of multipath, to consequently take ad-
vantage of an accurate measurement model.

Most commercial receivers address the multipath mitigation
problem by performing an integrity check. This test is based on
a receiver autonomous integrity monitoring (RAIM) strategy for
detecting the “defective” signals [2]. However, this approach was
conceived for aviation purposes under hypotheses that cannot be al-
ways applied to urban vehicle navigation. For instance, a minimum
number of unbiased measurements are needed in order to do this
integrity check. This condition cannot be ensured in urban canyon
scenarios. Even in the very favorable case where these unbiased
measurements were available, the noisy nature of the received sig-
nals would make this instantaneous integrity check to be highly in-
efficient. Within this context, this paper proposes a modified “in-
tegrity check” version adapted to urban areas.

This work was supported by Thales Alenia Space.

Several methods can be found in the literature concerning mul-
tipath mitigation. Different configurations of antennas arrays are
among the most typical hardware solutions [3]. Working on the re-
ceiver correlators to achieve code synchronization is another well
known approach. However, determining the number of channels af-
fected by multipath presents a major complexity [4]. In order to
avoid these difficulties (and be hardware-independent), multipath
correction can be performed on the final pseudo-range measure-
ment. For instance, the contributions of all the multipath signals
present at the receiver are summed up and the final error is modeled
as a unique phenomenon. In this paper we propose to consider two
different kinds of errors depending on the conditions in which the
GPS signal is received.

Multipath signals can arrive to the receiver either in a line-of-
sight (LOS) situation where the direct path is present (i.e. direct
visibility over the corresponding satellite), either in a non-line-of-
sight (NLOS) situation where the received signal contains multipath
components only. In the first case, the errors introduced by multi-
path on the pseudo-range measurement depend on external time-
varying parameters. These parameters include the density of the
obstacle where the GPS signal was reflected, its distance from the
moving vehicle, its relative phase with respect to the direct path
signal, etc... This kind of multipath interference can be modeled by
a noise variance jump in the received signal. For the NLOS case,
(where just the reflected signal is tracked), the corrupted pseudo-
range is affected by a mean value jump corresponding to a bias in
the received signal [5, 6]. The main contribution of this paper is to
study an appropriate algorithm for the detection of these two types
of errors (LOS and NLOS) affecting the received GPS signal. It is
important to note here that the final system will be based on a three
hypothesis model: absence of error (nominal situation), presence of
error and LOS, presence of error and NLOS.

Multipath detection has already received some attention in the
literature. Giremus et al. [5] studied a Rao Blackwellized parti-
cle filter based on a jump Markov system. The proposed algorithm
modeled the multipath NLOS situation by a mean value jump whose
magnitude was jointly estimated with the vehicle position and ve-
locity. Another two-hypothesis Bayesian approach was considered
in [7]. The interfered signals were characterized by errors models
based on Gaussian mixtures. However, the existing algorithms de-
scribed above require to define a priori distributions for the NLOS
error. This a priori knowledge is not easy to obtain in real urban
scenarios. Moreover, the high computational cost of particle filters
is a problem for land vehicle applications.

This paper studies a conventional extended Kalman filter (EKF)
for the navigation solution. This filter is coupled with a two step
approach for the detection and correction of errors affecting the the
received measurements. This approach is based on a hierarchical
structure corresponding to a three hypothesis model. A first in-
tegrity check is performed to detect the presence of an anomaly in
the corrupted signal using the EKF innovations. The second step
consists of classifying the different sources of errors depending on
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the presence or absence of LOS. Errors observed in presence of
LOS are modeled as variance changes. Conversely, errors observed
in absence of LOS are modeled as mean value jumps as in [5, 6].
The detection of variance changes or mean value jumps is achieved
using using a scheme based on the Generalized Likelihood ratio
(GLR) test. Finally, the parameters associated to the two kinds of
errors (that have been detected in the first step) are jointly estimated
and the measurement model is adapted considering the most likely
error. Therefore, a correct characterization of the received signals
will enable a more accurate solution for the estimated position.

The paper is organized as follows: Section 2 describes the nav-
igation filtering models for urban scenarios. Different hypotheses
about the conditions in which the signal is received are addressed
here. The proposed algorithm for multipath interference mitigation
is presented in section 3. Sections 3.3 and 3.4 provide a deeper anal-
ysis about the detection/identification/correction approach. Simula-
tion results are presented in Section 4. Conclusions and perspectives
are reported in Section 5.

2. NAVIGATION MODELS

The following state-space model is considered in this paper for the
GPS navigation filter:

Xt = FXt−1+w(t), (1)

Yi(t) =

√∥∥xs,i− xt
∥∥2+b(t)+mi,t +

√
(σ2i,t + r

2
i,t)vi(t), (2)

where Xt is the state vector ∈ R
8 and Yt is the measurement vector

for i = 1, ...,nsat , nsat being the number of visible satellites. The
state vector Xt is composed of the vehicle position xt in the ECEF
frame, its corresponding velocities and the receiver clock bias bt
and drift dt . The state propagation matrix F in (1) corresponds to
a random walk model where the acceleration has a Gaussian dis-
tribution. The state noise vector is represented by w(t). The ith
satellite position in the ECEF frame is denoted by xs,i. The last
term in (2) is the measurement noise whose nominal variance is de-
noted as σ2i,t , while vi(t) is a zero mean Gaussian variable such that
vi(t) ∼N (0,1). The two possible types of errors affecting the re-
ceived measurement are denoted as mi,t and ri,t in (2). In nominal
conditions, both mi,t and ri,t equal 0. In presence of LOS interfer-
ence mi,t = 0 and r2i,t �= 0, whereas in NLOS situation mi,t �= 0 and
r2i,t = 0 . Thus, mi,t characterizes the presence of a bias in absence
of LOS whereas r2i,t defines the variance change associated to the
presence of error in LOS.

3. MULTIPATH MITIGATION

3.1 Multi-hypothesis approach
Usual multipath mitigation schemes based on pseudo-range mea-
surements consider a binary system where either the received sig-
nals are in LOS (i.e. bias-free), either they are in a NLOS situation
(just the multipath signal is received) and a mean value jump is
present. However, real scenarios are more complicated and a third
option is possible corresponding to a composite signal due to the
presence at the receiver antenna of a LOS and multipath signal. The
error introduced by the multipath component will depend on its rel-
ative phase and delay with respect to the direct signal. Hence, this
error will be continuously changing due to its dependence on not
only the vehicle dynamics, but also on the local environment (the
surfaces where the signal gets reflected). This paper models this er-
ror as a variance change in the additive noise. Although a change
in the noise variance does not have such a strong impact on the po-
sitioning accuracy when compared to a mean value jump, it reveals
to be a crucial factor when a precise bounding must be given for the
final position solution.

A three hypothesis criterion is proposed to detect, identify and
correct errors in the measurements:

• H0: absence of error (the received measurement is in LOS and
not interfered), i.e. mi,t = 0 and r2i,t = 0,

• H1: the received measurement is in NLOS situation and affected
by a mean value jump, i.e. mi,t �= 0 and r2i,t = 0,

• H2: the received measurement is in LOS situation and is af-
fected by a variance change in the additive noise, i.e. mi,t = 0
and r2i,t �= 0.

Under hypothesis H0, the model error (i.e., the additive noise) has
a Gaussian distribution. However, under hypotheses H1 and H2, the
nominal Gaussian distribution is no longer valid because of multi-
path presence. The errors associated to the two hypotheses H1 and
H2 were modeled as a Gaussian mixture in [7]. However, when
analyzed more in detail, this mixture model (obtained from a real
navigation scenario) can be decomposed into a mean-shifted or a
variance-increased Gaussian distribution (see figure 4 of [7]).1

3.2 System outline
The conditions in which signals are received in urban environments
are constantly changing. The origin, magnitude and type of bias in-
terfering the signals will depend on the satellite configuration and
on the environment layout. Moreover, the error introduced by a
multipath presence in an LOS situation, is different to the error in-
troduced in an NLOS case. Hence, no a priori information about
the evolution of the different multipath-based errors is assumed. To
avoid imposing an error distribution, multipath presence is tested at
every sampling period and its contribution to the measurement is
estimated.

Due to the non linearity of the measurement model in (2) an
EKF is used for the general navigation solution. A hierarchical
method is proposed for error detection and later for error identifi-
cation and quantification. The idea is that this multi-stage approach
enables an urban-adapted navigation filter without entailing heavy
computations in clear sky scenarios. The mitigation scheme is de-
scribed as follows:
1. Error detection

• The presence of an error is detected by performing an energy
test on the innovations (this strategy is a direct result of the
Neyman Pearson lemma).

2. Error identification
• In case an error has been detected, a parallel processing is
achieved for classifying the two possible sources of error.
Two GLR tests are performed simultaneously for the de-
tected outlier, since it can be affected by a mean value jump
or by a variance change in the additive noise. The most
likely hypothesis (H1 or H2) is considered for error correc-
tion.

3. Error correction
• The received measurement model is updated either by a
mean value jump or by a change in the noise variance, de-
pending on the hypothesis that has been detected in the iden-
tification step. The corrected signal is then fed back to the
main system (composed by the EKF) that computes the final
position.

The proposed multi hypothesis approach can detect outliers, iden-
tify and correct different types of errors. The detection of measure-
ment errors will be conducted by using the EKF innovations

Ii(t) = Yi(t)− Ŷi(Xt), (3)

as in [8], where Ŷi(Xt) is the measurement predicted from the prop-
agated state vector. In nominal conditions, the innovations are dis-

1The actual mean value jump does not only represent an NLOS situation
but also an LOS situation where the vehicle is not moving (i.e. the multipath
delay and phase are constant, so its final contribution to the direct received
signal is also a mean value jump). However, as this error is finally considered
under the hypothesisH1, the approach is still valid without loss of generality.
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tributed according to a centered Gaussian distribution whose covari-
ance matrix St is defined as follows:

St = HtPt|t−1H
′
t +Rt , (4)

where Ht is the linearized measurement matrix and Pt|t−1 is the a
priori state covariance noise matrix. The innovations associated to
different time instants are assumed to be independent. The variance
of the ith innovation (denoted as s2i,t ) is given by the ith element of
the diagonal of St . In this way, the ith innovation error is distributed
according to a Gaussian distributionN (0,s2i,t) under hypothesisH0
(i.e., in nominal situations).

The EKF minimizes the mean square error (MSE) of the state
vector considering that the received measurements have a Gaussian
distribution with known parameters. If such a hypothesis is not ful-
filled, the convergence and stability of the filter are no longer guar-
anteed. Hence, a measurement subjected to any interference must
be detected and its error distribution has to be characterized. As-
suming the resultant distributions are Gaussian, the errors can be
compensated and the EKF will still be able to provide a consistent
solution. Details about the detection, estimation and correction of
errors are provided in the following sections.

Figure 1: Filter scheme for the detection and correction of outliers.

3.3 Error detection
The first step of the algorithm detects the presence of corrupted sig-
nals referred to as outliers. The type of error affecting the signal is
not specified at this point. A binary hypothesis test is performed to
determine the absence (hypothesis H0) or presence (hypotheses H1
and H2) of an error in the measurements. The test is achieved for
each of the received signals. A test based on the knowledge of the
C/N0 ratio was presented in [7] to decide whether the received sig-
nal is error corrupted or not. However, if the multipath is in phase
with the LOS signal, this test may no longer be valid. This paper
considers a sliding window of N samples as observation window
and assumes that the error (when it exists) is constant during this
period of time. The energy of the innovations for each of the nsat
observation windows containing N samples is computed. The de-
tection of errors is then achieved as follows:

Ti,t =
t

∑
j=t−N+1

I2i ( j)
H0
≶

H1 or H2
αi,t ∀i= 1, . . . ,nsat (5)

where αi,t is the detection threshold related to the probability of
false alarm (PFA) of the test. The test statistics Ti,t is distributed
according to a central chi2 distribution with N degrees of freedom
(denoted as χ2N ), under hypothesis H0. If the test statistics Ti,t ex-
ceeds the threshold αi,t , the presence of a error is declared and the
error estimation procedure is used to determine the kind of error
affecting the received signal.

Fig. 2 shows the error distributions under the hypotheses H0,
H1 and H2. It can be seen that the presence of error in the mea-
surements (hypotheses H1 and H2) yields an innovation with larger
energy than under hypothesis H0. It is important to note that the
threshold determination does not depend on the innovation distribu-
tions associated to H1 and H2. Moreover, no knowledge about the
mean value jumps and the variance changes in the additive noise
have to be known to compute the test statistics.

0 m̂r̂

Figure 2: Error probability distribution for hypotheses H0 (solid
line), H1 (dashed line) and H2 (dashed-dotted line).

The detected outlier is isolated from the solution in standard
integrity checks, such as the RAIM algorithm. Such an approach
is valid in clear sky scenarios where the received measurements are
redundant. However, in urban environments, visibility over the GPS
constellation is scarce and measurement exclusion may lead to an
undetermined system. Therefore the maximum number of received
measurements is needed to compute the position solution. Thus the
detection step must be followed by the estimation and correction of
the anomaly. This is the objective of the following sections.

3.4 Error identification and correction
As explained before, once an outlier has been detected, its source
of error has to be identified and corrected. Estimates of m and r
are computed and used to determine the final navigation solution.
Due to the recursive nature of the EKF, not only the error magnitude
must be estimated but also its time of occurrence. Note that the time
of occurrence k of the error is generally smoothed within the obser-
vation window in (5), so that the effective time of detection does
not match the real one. In case of missed detection, the error gets
propagated through the state vector, and the estimated error magni-
tude can differ significantly from its real value. As a consequence,
both hypotheses H1 and H2 depend on the error parameter m or r
(that are supposed to be constant inside the observation window)
and on the time of occurrence k (where k can take any value within
the observation window t−N+1 : t) that should be estimated care-
fully. All expressions given hereafter will address just the detected
outliers and should be applied to each of them.

The time occurrence estimation can be achieved by using the
marginalized likelihood ratio (MLR) proposed by Gustafsson [9].
However, this test requires an a priori knowledge about the prob-
ability distributions of the parameters to be estimated (mean value
jumps or variance changes in our case). A modified generalized
likelihood ratio (GLR) is adopted in this paper [10] where each
jump is considered as an unknown constant (as opposed to a ran-
dom variable). The GLR proceeds for each detected outlier to a
double maximization over the hypothesis variables v (v = m under
hypothesis H1 and v= r under hypothesis H2) and k defined by

v̂(k) = argmax
v
lt(k,v), (6)

k̂ = argmax
k
li (k, v̂(k)) , (7)

lt(k,v) = 2log
p
(
Yt−N+1:t |Hj(k,v)

)
p(Yt−N+1:t |H0)

, (8)

where j ∈ {1,2}, p(Yt−N+1:t |Hj(k,v)) represents the probability of
observing an error at time instant k for Yt−N+1:t , and lt(k,v) is the
log likelihood ratio. The method proposed in [10] is based on the
idea that the relation between v and the EKF innovations can be
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made explicit and represented as a linear regression. Then, after
calculating the required regressors, a recursive least square bank of
filters is implemented to find the values of v̂(k). However, even if a
linear dependency for a mean value jump can be easily stated, this is
not the case for variance changes. Therefore a suboptimal solution
is considered in this paper. The error is calculated considering the
N previous innovation samples as in [8]. More precisely, the mean
value jump and the variance change are computed as

m̂t(k) =
1

t− k+1

t

∑
j=k
I( j), (9)

r̂2t (k) =
1

t− k+1

t

∑
j=k

{
[I( j)]2− s2j

}
, (10)

where the nominal innovation variance s2j (estimated under hypoth-
esis H0) is subtracted from the calculated innovation variance in
order to have the final variance jump. If this difference is negative,
no variance jump is considered. An EFK is deployed to calculate
for each k = t−N : t a likelihood ratio based on v̂(k) associated to
each detected outlier. Once the likelihood ratio exceeds an appro-
priate threshold γ , the corresponding k̂ is chosen as the candidate
for the time of occurrence k:

k̂ =min
k
{k; lt(k, v̂(k)) > γ} (11)

Once the threshold has been estimated, the error is assumed to be
constant for the remaining samples of the sliding window. The fil-
tering continues until time t, by taking into account the already de-
tected error.

To conclude with the multi-hypothesis approach, a decision has
to be taken regarding the kind of error that has been detected for
each corrupted pseudo-range. Assuming both H1 and H2 have the
same probabilities, the most likely hypothesis determines whether
there is presence or absence of LOS in the received measurement
Yt−N+1:t . This is achieved using the following rule

p(Yt−N+1:t |k̂H1 , m̂t(k̂H1))
H1
≷
H2
p(Yt−N+1:t |k̂H2 , r̂t(k̂H2)) (12)

with

p(Yt−N+1:t |k̂H1 , m̂t(k̂H1)) ∝
t

∑
j=t−N+1

[IH1( j)]
2

s2j
, (13)

p(Yt−N+1:t |k̂H2 , r̂t(k̂H2)) ∝
t

∑
j=t−N+1

[IH2( j)]
2

s2j
, (14)

where I2H1( j) is the square of innovation corresponding to the jth
time that has already been compensated by a mean value jump (i.e
considering H1). The innovation I2H2( j) is analogous to I

2
H1( j) but

compensated by a change in the noise variance. Finally, the mea-
surement model associated to every detected outlier has to be cor-
rected and fedback to the update stage of the EKF algorithm. More
precisely, a bias is removed from the innovations under hypothesis
H1 whereas a variance is added to nominal variance under hypoth-
esis H2. These two corrections are summarized by the following
relations

I(t)corr = I(t)− m̂t , (15)

σ2t,corr = σ2t + r̂2t . (16)

Note that the corrected variance σ2t,corr is used for the new compu-
tation of the measurement noise covariance matrix R. In this way, a
final unbiased navigation solution is calculated.

4. SIMULATIONS
This section validates the proposed detection/estimation algorithm
using simulated data. A vehicle trajectory has been generated ac-
cording to the state model (1) with an acceleration variance of
2m/s2. The received pseudo-range measurements correspond to a
simulated GPS constellation and have an associated noise standard
deviation of σ = 12m in nominal conditions. The errors introduced
in the measurements have been generated according to the model
(2) as follows
• A mean value jump of 40m is introduced in the satellite number
1, between the 30th and 60th second.

• A noise variance jump of 40m affects the same satellite for a
time interval of 40 seconds between the 100th and 140th second.

• A second satellite (satellite number 2) experiences a mean value
jump of 40m between the 110th and 150th second.

The simulated errors were introduced to highlight the performance
of the proposed navigation filter. The first isolated mean value jump
on satellite 1 (corresponding to hypothesis H1) is the type of error
that more visibly affects the positioning accuracy. The correct func-
tioning of the filter is tested for this critical situation. A simultane-
ous appearance of different errors is then studied. Two satellites are
corrupted by different types of errors during overlapped time inter-
vals. In this way, the algorithm is tested for its capacity to identify
several defective measurements and their corresponding source of
error. The threshold for the error detection in (5) has been adjusted
in order to obtain FAP = 0.1%. The observation window length is
N = 5 and the sampling period equals 1Hz. The estimation of the
error time of occurrence in (11) has been achieved with γ = 1 (i.e.
once the error presence has been detected, all time instants within
the observation window are equally likely).

Figs 3 and 4 show the innovation pdfs corresponding to the
two satellites corrupted by errors (satellites 1 and 2). The nomi-
nal gaussian pdf is depicted in red while the actual normalized pdf
for the EKF innovations is shown in blue. The pdfs are obtained
from all the available samples of the simulated satellites. The re-
sults are presented in Fig. 3(a) for a standard EKF (i.e. without
any error control), and in Fig. 3(b) for the proposed enhanced de-
tection/estimation filter. The innovations do not have a Gaussian
distribution in the first case because the corrupted measurements
are not compensated by the filter (the green circles highlight the
abnormal components of the pdf). Conversely, when errors are cor-
rected with the proposed algorithm, the histogram of the corrected
innovations is close to the adjusted Gaussian pdf.

Fig. 5 presents similar results for the final estimated posi-
tion. The absolute position errors (in 3D) are shown in blue and
compared with their corresponding bounds illustrated in red. The
bounds have been calculated from the updated EKF error covari-
ance matrix Pt , i.e. using the following relation

Bt = 3
√

σ2x,t +σ2y,t +σ2z,t , (17)

considering that all solutions should be included within 3 time the
standard deviation. The non compensated contribution of the cor-
rupted measurements is presented in Fig. 5(a). For this case, the
final solution is either biased or not bounded during the intervals
where errors are present. However, Fig. 5(b) shows that the posi-
tion estimates are in good agreement with the bound thanks to the
proposed detection/identification/correction scheme.

5. CONCLUSIONS
This paper presented an enhanced navigation system adapted to ur-
ban canyon scenarios. The innovation of the proposed approach
relied on the way the received signals are processed: a two step pro-
cedure was used to detect multiple outliers and to classify these out-
liers according to the different types of errors affecting the naviga-
tion signal. A hierarchical three-hypothesis test was implemented.
Two different situations were considered in the presence of multi-
path. These situations correspond to the presence or absence of line
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of sight (referred to as LOS and NLOS situations) over the multi-
ple GPS satellites. Therefore two kinds of errors were potentially
“corrupting” the pseudo-ranges, modeled as noise variance or mean
value jumps. A GLR detector was derived to determine the origin
and quantify such errors. A multiple model EKF was considered as
the best adapted solution for this fast-decision/on-line application.
Simulation results presented for synthetic signals validated the rel-
evance of the proposed algorithm.

Interesting future investigations include the application of the
proposed scheme to different areas where similar problems may be
encountered. For example, similar errors were considered to af-
fect the mobile communication signals [6]. The proposed strategy
should be interesting in this context.
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Figure 3: Innovation distributions for satellite 1 (a) Standard EKF
and (b) Proposed detection/correction algorithm.
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Figure 4: Innovation distributions for satellite 2. (a) Standard EKF
and (b) Proposed detection/correction algorithm.
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