3,589 research outputs found

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks

    Full text link
    We introduce Florence-2, a novel vision foundation model with a unified, prompt-based representation for a variety of computer vision and vision-language tasks. While existing large vision models excel in transfer learning, they struggle to perform a diversity of tasks with simple instructions, a capability that implies handling the complexity of various spatial hierarchy and semantic granularity. Florence-2 was designed to take text-prompt as task instructions and generate desirable results in text forms, whether it be captioning, object detection, grounding or segmentation. This multi-task learning setup demands large-scale, high-quality annotated data. To this end, we co-developed FLD-5B that consists of 5.4 billion comprehensive visual annotations on 126 million images, using an iterative strategy of automated image annotation and model refinement. We adopted a sequence-to-sequence structure to train Florence-2 to perform versatile and comprehensive vision tasks. Extensive evaluations on numerous tasks demonstrated Florence-2 to be a strong vision foundation model contender with unprecedented zero-shot and fine-tuning capabilities

    Computing with Granular Words

    Get PDF
    Computational linguistics is a sub-field of artificial intelligence; it is an interdisciplinary field dealing with statistical and/or rule-based modeling of natural language from a computational perspective. Traditionally, fuzzy logic is used to deal with fuzziness among single linguistic terms in documents. However, linguistic terms may be related to other types of uncertainty. For instance, different users search ‘cheap hotel’ in a search engine, they may need distinct pieces of relevant hidden information such as shopping, transportation, weather, etc. Therefore, this research work focuses on studying granular words and developing new algorithms to process them to deal with uncertainty globally. To precisely describe the granular words, a new structure called Granular Information Hyper Tree (GIHT) is constructed. Furthermore, several technologies are developed to cooperate with computing with granular words in spam filtering and query recommendation. Based on simulation results, the GIHT-Bayesian algorithm can get more accurate spam filtering rate than conventional method Naive Bayesian and SVM; computing with granular word also generates better recommendation results based on users’ assessment when applied it to search engine

    FADE: Fusing the Assets of Decoder and Encoder for Task-Agnostic Upsampling

    Full text link
    We consider the problem of task-agnostic feature upsampling in dense prediction where an upsampling operator is required to facilitate both region-sensitive tasks like semantic segmentation and detail-sensitive tasks such as image matting. Existing upsampling operators often can work well in either type of the tasks, but not both. In this work, we present FADE, a novel, plug-and-play, and task-agnostic upsampling operator. FADE benefits from three design choices: i) considering encoder and decoder features jointly in upsampling kernel generation; ii) an efficient semi-shift convolutional operator that enables granular control over how each feature point contributes to upsampling kernels; iii) a decoder-dependent gating mechanism for enhanced detail delineation. We first study the upsampling properties of FADE on toy data and then evaluate it on large-scale semantic segmentation and image matting. In particular, FADE reveals its effectiveness and task-agnostic characteristic by consistently outperforming recent dynamic upsampling operators in different tasks. It also generalizes well across convolutional and transformer architectures with little computational overhead. Our work additionally provides thoughtful insights on what makes for task-agnostic upsampling. Code is available at: http://lnkiy.in/fade_inComment: Accepted to ECCV 2022. Code is available at http://lnkiy.in/fade_i

    Universal-RCNN: Universal Object Detector via Transferable Graph R-CNN

    Full text link
    The dominant object detection approaches treat each dataset separately and fit towards a specific domain, which cannot adapt to other domains without extensive retraining. In this paper, we address the problem of designing a universal object detection model that exploits diverse category granularity from multiple domains and predict all kinds of categories in one system. Existing works treat this problem by integrating multiple detection branches upon one shared backbone network. However, this paradigm overlooks the crucial semantic correlations between multiple domains, such as categories hierarchy, visual similarity, and linguistic relationship. To address these drawbacks, we present a novel universal object detector called Universal-RCNN that incorporates graph transfer learning for propagating relevant semantic information across multiple datasets to reach semantic coherency. Specifically, we first generate a global semantic pool by integrating all high-level semantic representation of all the categories. Then an Intra-Domain Reasoning Module learns and propagates the sparse graph representation within one dataset guided by a spatial-aware GCN. Finally, an InterDomain Transfer Module is proposed to exploit diverse transfer dependencies across all domains and enhance the regional feature representation by attending and transferring semantic contexts globally. Extensive experiments demonstrate that the proposed method significantly outperforms multiple-branch models and achieves the state-of-the-art results on multiple object detection benchmarks (mAP: 49.1% on COCO).Comment: Accepted by AAAI2

    Characterizing the Information Needs of Rural Healthcare Practitioners with Language Agnostic Automated Text Analysis

    Get PDF
    Objectives – Previous research has characterized urban healthcare providers\u27 information needs, using various qualitative methods. However, little is known about the needs of rural primary care practitioners in Brazil. Communication exchanged during tele-consultations presents a unique data source for the study of these information needs. In this study, I characterize rural healthcare providers\u27 information needs expressed electronically, using automated methods. Methods – I applied automated methods to categorize messages obtained from the telehealth system from two regions in Brazil. A subset of these messages, annotated with top-level categories in the DeCS terminology (the regional equivalent of MeSH), was used to train text categorization models, which were then applied to a larger, unannotated data set. On account of their more granular nature, I focused on answers provided to the queries sent by rural healthcare providers. I studied these answers, as surrogates for the information needs they met. Message representations were generated using methods of distributional semantics, permitting the application of k-Nearest Neighbor classification for category assignment. The resulting category assignments were analyzed to determine differences across regions, and healthcare providers. Results – Analysis of the assigned categories revealed differences in information needs across regions, corresponding to known differences in the distributions of diseases and tele-consultant expertise across these regions. Furthermore, information needs of rural nurses were observed to be different from those documented in qualitative studies of their urban counterparts, and the distribution of expressed information needs categories differed across types of providers (e.g. nurses vs. physicians). Discussion – The automated analysis of large amounts of digitally-captured tele-consultation data suggests that rural healthcare providers\u27 information needs in Brazil are different than those of their urban counterparts in developed countries. The observed disparities in information needs correspond to known differences in the distribution of illness and expertise in these regions, supporting the applicability of my methods in this context. In addition, these methods have the potential to mediate near real-time monitoring of information needs, without imposing a direct burden upon healthcare providers. Potential applications include automated delivery of needed information at the point of care, needs-based deployment of tele-consultation resources and syndromic surveillance. Conclusion – I used automated text categorization methods to assess the information needs expressed at the point of care in rural Brazil. My findings reveal differences in information needs across regions, and across practitioner types, demonstrating the utility of these methods and data as a means to characterize information needs
    corecore