22,891 research outputs found

    Living with the Semantic Gap: Experiences and remedies in the context of medical imaging

    No full text
    Semantic annotation of images is a key concern for the newly emerged applications of semantic multimedia. Machine processable descriptions of images make it possible to automate a variety of tasks from search and discovery to composition and collage of image data bases. However, the ever occurring problem of the semantic gap between the low level descriptors and the high level interpretation of an image poses new challenges and needs to be addressed before the full potential of semantic multimedia can be realised. We explore the possibilities and lessons learnt with applied semantic multimedia from our engagement with medical imaging where we deployed ontologies and a novel distributed architecture to provide semantic annotation, decision support and methods for tackling the semantic gap problem

    Towards automated knowledge-based mapping between individual conceptualisations to empower personalisation of Geospatial Semantic Web

    No full text
    Geospatial domain is characterised by vagueness, especially in the semantic disambiguation of the concepts in the domain, which makes defining universally accepted geo- ontology an onerous task. This is compounded by the lack of appropriate methods and techniques where the individual semantic conceptualisations can be captured and compared to each other. With multiple user conceptualisations, efforts towards a reliable Geospatial Semantic Web, therefore, require personalisation where user diversity can be incorporated. The work presented in this paper is part of our ongoing research on applying commonsense reasoning to elicit and maintain models that represent users' conceptualisations. Such user models will enable taking into account the users' perspective of the real world and will empower personalisation algorithms for the Semantic Web. Intelligent information processing over the Semantic Web can be achieved if different conceptualisations can be integrated in a semantic environment and mismatches between different conceptualisations can be outlined. In this paper, a formal approach for detecting mismatches between a user's and an expert's conceptual model is outlined. The formalisation is used as the basis to develop algorithms to compare models defined in OWL. The algorithms are illustrated in a geographical domain using concepts from the SPACE ontology developed as part of the SWEET suite of ontologies for the Semantic Web by NASA, and are evaluated by comparing test cases of possible user misconceptions

    Semantic web technologies for video surveillance metadata

    Get PDF
    Video surveillance systems are growing in size and complexity. Such systems typically consist of integrated modules of different vendors to cope with the increasing demands on network and storage capacity, intelligent video analytics, picture quality, and enhanced visual interfaces. Within a surveillance system, relevant information (like technical details on the video sequences, or analysis results of the monitored environment) is described using metadata standards. However, different modules typically use different standards, resulting in metadata interoperability problems. In this paper, we introduce the application of Semantic Web Technologies to overcome such problems. We present a semantic, layered metadata model and integrate it within a video surveillance system. Besides dealing with the metadata interoperability problem, the advantages of using Semantic Web Technologies and the inherent rule support are shown. A practical use case scenario is presented to illustrate the benefits of our novel approach

    A Semantic-Agent Framework for PaaS Interoperability

    Get PDF
    Suchismita Hoare, Na Helian, and Nathan Baddoo, 'A Semantic-Agent Framework for PaaS Interoperability', in Proceedings of the The IEEE International Conference on Cloud and Big Data Computing, Toulouse, France, 18-21, July 2016. DOI: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0126 © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Cloud Platform as a Service (PaaS) is poised for a wider adoption by its relevant stakeholders, especially Cloud application developers. Despite this, the service model is still plagued with several adoption inhibitors, one of which is lack of interoperability between proprietary application infrastructure services of public PaaS solutions. Although there is some progress in addressing the general PaaS interoperability issue through various devised solutions focused primarily on API compatibility and platform-agnostic application design models, interoperability specific to differentiated services provided by the existing public PaaS providers and the resultant disparity owing to the offered services’ semantics has not been addressed effectively, yet. The literature indicates that this dimension of PaaS interoperability is awaiting evolution in the state-of-the-art. This paper proposes the initial system design of a PaaS interoperability (IntPaaS) framework to be developed through the integration of semantic and agent technologies to enable transparent interoperability between incompatible PaaS services. This will involve uniform description through semantic annotation of PaaS provider services utilizing the OWL-S ontology, creating a knowledgebase that enables software agents to automatically search for suitable services to support Cloud-based Greenfield application development. The rest of the paper discusses the identified research problem along with the proposed solution to address the issue.Submitted Versio

    Integrating Distributed Sources of Information for Construction Cost Estimating using Semantic Web and Semantic Web Service technologies

    Get PDF
    A construction project requires collaboration of several organizations such as owner, designer, contractor, and material supplier organizations. These organizations need to exchange information to enhance their teamwork. Understanding the information received from other organizations requires specialized human resources. Construction cost estimating is one of the processes that requires information from several sources including a building information model (BIM) created by designers, estimating assembly and work item information maintained by contractors, and construction material cost data provided by material suppliers. Currently, it is not easy to integrate the information necessary for cost estimating over the Internet. This paper discusses a new approach to construction cost estimating that uses Semantic Web technology. Semantic Web technology provides an infrastructure and a data modeling format that enables accessing, combining, and sharing information over the Internet in a machine processable format. The estimating approach presented in this paper relies on BIM, estimating knowledge, and construction material cost data expressed in a web ontology language. The approach presented in this paper makes the various sources of estimating data accessible as Simple Protocol and Resource Description Framework Query Language (SPARQL) endpoints or Semantic Web Services. We present an estimating application that integrates distributed information provided by project designers, contractors, and material suppliers for preparing cost estimates. The purpose of this paper is not to fully automate the estimating process but to streamline it by reducing human involvement in repetitive cost estimating activities

    A commentary on standardization in the Semantic Web, Common Logic and MultiAgent Systems

    Get PDF
    Given the ubiquity of the Web, the Semantic Web (SW) offers MultiAgent Systems (MAS) a most wide-ranging platform by which they could intercommunicate. It can be argued however that MAS require levels of logic that the current Semantic Web has yet to provide. As ISO Common Logic (CL) ISO/IEC IS 24707:2007 provides a firstorder logic capability for MAS in an interoperable way, it seems natural to investigate how CL may itself integrate with the SW thus providing a more expressive means by which MAS can interoperate effectively across the SW. A commentary is accordingly presented on how this may be achieved. Whilst it notes that certain limitations remain to be addressed, the commentary proposes that standardising the SW with CL provides the vehicle by which MAS can achieve their potential.</p
    • …
    corecore