3 research outputs found

    Energy-Efficient System Design for Future Wireless Communications

    Get PDF
    The exponential growth of wireless data traffic has caused a significant increase in the power consumption of wireless communications systems due to the higher complexity of the transceiver structures required to establish the communication links. For this reason, in this Thesis we propose and characterize technologies for improving the energy efficiency of multiple-antenna wireless communications. This Thesis firstly focuses on energy-efficient transmission schemes and commences by introducing a scheme for alleviating the power loss experienced by the Tomlinson-Harashima precoder, by aligning the interference of a number of users with the symbols to transmit. Subsequently, a strategy for improving the performance of space shift keying transmission via symbol pre-scaling is presented. This scheme re-formulates complex optimization problems via semidefinite relaxation to yield problem formulations that can be efficiently solved. In a similar line, this Thesis designs a signal detection scheme based on compressive sensing to improve the energy efficiency of spatial modulation systems in multiple access channels. The proposed technique relies on exploiting the particular structure and sparsity that spatial modulation systems inherently possess to enhance performance. This Thesis also presents research carried out with the aim of reducing the hardware complexity and associated power consumption of large scale multiple-antenna base stations. In this context, the employment of incomplete channel state information is proposed to achieve the above-mentioned objective in correlated communication channels. The candidate’s work developed in Bell Labs is also presented, where the feasibility of simplified hardware architectures for massive antenna systems is assessed with real channel measurements. Moreover, a strategy for reducing the hardware complexity of antenna selection schemes by simplifying the design of the switching procedure is also analyzed. Overall, extensive theoretical and simulation results support the improved energy efficiency and complexity of the proposed schemes, towards green wireless communications systems

    Energy Efficient Large Scale Antenna Systems for 5G Communications and Beyond

    Get PDF
    The increasing popularity of mobile devices has fueled an exponential growth in data traffic. This phenomenon has led to the development of systems that achieve higher spectral efficiencies, at the cost of higher power consumptions. Consequently, the investigation on solutions that allow to increase the maximum throughput together with the energy efficiency becomes crucial for modern wireless systems. This thesis aims to improve the trade-off between performances and power consumption with special focus toward multiuser multiple-antenna communications, due to their promising benefits in terms of spectral efficiency. Research envisaged massive Multi-Input-Multi-Output (MIMO) systems as the main technology to meet these data traffic demands, as very large arrays lead to unprecedented data throughputs and beamforming gains. However, larger arrays lead to increased power consumption and hardware complexity, as each radiating element requires a radio frequency chain, which is accountable for the highest percentage of the total power consumption. Nonetheless, the availability of a large number of antennas unveils the possibility to wisely select a subset of radiating elements. This thesis shows that multiuser interference can be exploited to increase the received power, with significant circuit power savings at the base station. Similarly, millimeter-wave communications experienced raising interest among the scientific community because of their multi-GHz bandwidth and their ability to place large arrays in limited physical spaces. Millimeter-wave systems inherit same benefits and weaknesses of massive MIMO communications. However, antenna selection is not viable in millimeter-wave communications because they rely on high beamforming gains. Therefore, this thesis proposes a scheme that is able to reduce the number of radio frequency chains required, while achieving close-to-optimal performances. Analytical and numerical results show that the proposed techniques are able to improve the overall energy efficiency with respect to the state-of-the-art, hence proving to be valid candidates for practical implementations of modern communication systems

    D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies

    Full text link
    This document provides the most recent updates on the technical contributions and research challenges focused in WP3. Each Technology Component (TeC) has been evaluated under possible uniform assessment framework of WP3 which is based on the simulation guidelines of WP6. The performance assessment is supported by the simulation results which are in their mature and stable state. An update on the Most Promising Technology Approaches (MPTAs) and their associated TeCs is the main focus of this document. Based on the input of all the TeCs in WP3, a consolidated view of WP3 on the role of multinode/multi-antenna transmission technologies in 5G systems has also been provided. This consolidated view is further supported in this document by the presentation of the impact of MPTAs on METIS scenarios and the addressed METIS goals.Aziz, D.; Baracca, P.; De Carvalho, E.; Fantini, R.; Rajatheva, N.; Popovski, P.; Sørensen, JH.... (2015). D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675
    corecore