8 research outputs found

    On the number of channels required for interference-free wireless mesh networks

    Get PDF
    We study the problem of achieving maximum network throughput with fairness among the flows at the nodes in a wireless mesh network, given their location and the number of their half-duplex radio interfaces. Our goal is to find the minimum number of non-overlapping frequency channels required to achieve interference-free communication. We use our existing Select x for less than x topology control algorithm (TCA) to build the connectivity graph (CG), which enhances spatial channel reuse to help minimize the number of channels required. We show that the TCA-based CG approach requires fewer channels than the classical approach of building the CG based on the maximum power. We use multi-path routing to achieve the maximum network throughput and show that it provides better network throughput than the classical minimum power-based shortest path routing. We also develop an effective heuristic method to determine the minimum number of channels required for interference-free channel assignment

    Spectrum clouds: A session based spectrum trading system for multi-hop cognitive radio networks

    Full text link
    Abstract—Spectrum trading creates more accessing opportu-nities for secondary users (SUs) and economically benefits the primary users (PUs). However, it is challenging to implement spectrum trading in multi-hop cognitive radio networks (CRNs) due to harsh cognitive radio (CR) requirements on SUs ’ devices and complex conflict and competition relationship among dif-ferent CR sessions. Unlike the per-user based spectrum trading designs in previous studies, in this paper, we propose a novel session based spectrum trading system, spectrum clouds, in multi-hop CRNs. In spectrum clouds, we introduce a new service provider, called secondary service provider (SSP), to harvest the available spectrum bands and facilitate the accessing of SUs without CR capability. The SSP also conducts spectrum trading among CR sessions w.r.t. their conflicts and competitions. Lever-aging a 3-dimensional (3-D) conflict graph, we mathematically describe the conflicts and competitions among the candidate sessions for spectrum trading. Given the rate requirements and bidding values of candidate trading sessions, we formulate the optimal spectrum trading into the SSP’s revenue maximization problem under multiple cross-layer constraints in multi-hop CRNs. In view of the NP-hardness of the problem, we have also developed heuristic algorithms to pursue feasible solutions. Through extensive simulations, we show that the solutions found by the proposed algorithms are close to the optimal one. I

    Interference mitigation in wireless mesh networks through radio co-location aware conflict graphs

    Get PDF
    Wireless Mesh Networks (WMNs) have evolved into a wireless communication technology of immense interest. But technological advancements in WMNs have inadvertently spawned a plethora of network performance bottlenecks, caused primarily by the rise in prevalent interference. Conflict Graphs are indispensable tools used to theoretically represent and estimate the interference in wireless networks. We propose a generic algorithm to generate conflict graphs which is independent of the underlying interference model. Further, we propose the notion of radio co-location interference, which is caused and experienced by spatially co-located radios in multi-radio multi-channel WMNs. We experimentally validate the concept, and propose a new all-encompassing algorithm to create a radio co-location aware conflict graph. Our novel conflict graph generation algorithm is demonstrated to be significantly superior and more efficient than the conventional approach, through theoretical interference estimates and comprehensive experiments. The results of an extensive set of ns-3 simulations run on the IEEE 802.11g platform strongly indicate that the radio co-location aware conflict graphs are a marked improvement over their conventional counterparts. We also question the use of total interference degree as a reliable metric to predict the performance of a Channel Assignment scheme in a given WMN deployment
    corecore