510,434 research outputs found

    Joint Person Re-identification and Camera Network Topology Inference in Multiple Cameras

    Full text link
    Person re-identification is the task of recognizing or identifying a person across multiple views in multi-camera networks. Although there has been much progress in person re-identification, person re-identification in large-scale multi-camera networks still remains a challenging task because of the large spatio-temporal uncertainty and high complexity due to a large number of cameras and people. To handle these difficulties, additional information such as camera network topology should be provided, which is also difficult to automatically estimate, unfortunately. In this study, we propose a unified framework which jointly solves both person re-identification and camera network topology inference problems with minimal prior knowledge about the environments. The proposed framework takes general multi-camera network environments into account and can be applied to online person re-identification in large-scale multi-camera networks. In addition, to effectively show the superiority of the proposed framework, we provide a new person re-identification dataset with full annotations, named SLP, captured in the multi-camera network consisting of nine non-overlapping cameras. Experimental results using our person re-identification and public datasets show that the proposed methods are promising for both person re-identification and camera topology inference tasks.Comment: 14 pages, 14 figures, 6 table

    Multi-scale analysis of lung computed tomography images

    Get PDF
    A computer-aided detection (CAD) system for the identification of lung internal nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 project. The three modules of our lung CAD system, a segmentation algorithm for lung internal region identification, a multi-scale dot-enhancement filter for nodule candidate selection and a multi-scale neural technique for false positive finding reduction, are described. The results obtained on a dataset of low-dose and thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.Comment: 18 pages, 12 low-resolution figure

    A fine-grained approach to scene text script identification

    Full text link
    This paper focuses on the problem of script identification in unconstrained scenarios. Script identification is an important prerequisite to recognition, and an indispensable condition for automatic text understanding systems designed for multi-language environments. Although widely studied for document images and handwritten documents, it remains an almost unexplored territory for scene text images. We detail a novel method for script identification in natural images that combines convolutional features and the Naive-Bayes Nearest Neighbor classifier. The proposed framework efficiently exploits the discriminative power of small stroke-parts, in a fine-grained classification framework. In addition, we propose a new public benchmark dataset for the evaluation of joint text detection and script identification in natural scenes. Experiments done in this new dataset demonstrate that the proposed method yields state of the art results, while it generalizes well to different datasets and variable number of scripts. The evidence provided shows that multi-lingual scene text recognition in the wild is a viable proposition. Source code of the proposed method is made available online

    Active User Authentication for Smartphones: A Challenge Data Set and Benchmark Results

    Full text link
    In this paper, automated user verification techniques for smartphones are investigated. A unique non-commercial dataset, the University of Maryland Active Authentication Dataset 02 (UMDAA-02) for multi-modal user authentication research is introduced. This paper focuses on three sensors - front camera, touch sensor and location service while providing a general description for other modalities. Benchmark results for face detection, face verification, touch-based user identification and location-based next-place prediction are presented, which indicate that more robust methods fine-tuned to the mobile platform are needed to achieve satisfactory verification accuracy. The dataset will be made available to the research community for promoting additional research.Comment: 8 pages, 12 figures, 6 tables. Best poster award at BTAS 201

    Multi-camera trajectory forecasting : pedestrian trajectory prediction in a network of cameras

    Get PDF
    We introduce the task of multi-camera trajectory forecasting (MCTF), where the future trajectory of an object is predicted in a network of cameras. Prior works consider forecasting trajectories in a single camera view. Our work is the first to consider the challenging scenario of forecasting across multiple non-overlapping camera views. This has wide applicability in tasks such as re-identification and multi-target multi-camera tracking. To facilitate research in this new area, we release the Warwick-NTU Multi-camera Forecasting Database (WNMF), a unique dataset of multi-camera pedestrian trajectories from a network of 15 synchronized cameras. To accurately label this large dataset (600 hours of video footage), we also develop a semi-automated annotation method. An effective MCTF model should proactively anticipate where and when a person will re-appear in the camera network. In this paper, we consider the task of predicting the next camera a pedestrian will re-appear after leaving the view of another camera, and present several baseline approaches for this. The labeled database is available online https://github.com/olly-styles/Multi-Camera-Trajectory-Forecastin

    Multispectral Palmprint Encoding and Recognition

    Full text link
    Palmprints are emerging as a new entity in multi-modal biometrics for human identification and verification. Multispectral palmprint images captured in the visible and infrared spectrum not only contain the wrinkles and ridge structure of a palm, but also the underlying pattern of veins; making them a highly discriminating biometric identifier. In this paper, we propose a feature encoding scheme for robust and highly accurate representation and matching of multispectral palmprints. To facilitate compact storage of the feature, we design a binary hash table structure that allows for efficient matching in large databases. Comprehensive experiments for both identification and verification scenarios are performed on two public datasets -- one captured with a contact-based sensor (PolyU dataset), and the other with a contact-free sensor (CASIA dataset). Recognition results in various experimental setups show that the proposed method consistently outperforms existing state-of-the-art methods. Error rates achieved by our method (0.003% on PolyU and 0.2% on CASIA) are the lowest reported in literature on both dataset and clearly indicate the viability of palmprint as a reliable and promising biometric. All source codes are publicly available.Comment: Preliminary version of this manuscript was published in ICCV 2011. Z. Khan A. Mian and Y. Hu, "Contour Code: Robust and Efficient Multispectral Palmprint Encoding for Human Recognition", International Conference on Computer Vision, 2011. MATLAB Code available: https://sites.google.com/site/zohaibnet/Home/code
    corecore