510,434 research outputs found
Joint Person Re-identification and Camera Network Topology Inference in Multiple Cameras
Person re-identification is the task of recognizing or identifying a person
across multiple views in multi-camera networks. Although there has been much
progress in person re-identification, person re-identification in large-scale
multi-camera networks still remains a challenging task because of the large
spatio-temporal uncertainty and high complexity due to a large number of
cameras and people. To handle these difficulties, additional information such
as camera network topology should be provided, which is also difficult to
automatically estimate, unfortunately. In this study, we propose a unified
framework which jointly solves both person re-identification and camera network
topology inference problems with minimal prior knowledge about the
environments. The proposed framework takes general multi-camera network
environments into account and can be applied to online person re-identification
in large-scale multi-camera networks. In addition, to effectively show the
superiority of the proposed framework, we provide a new person
re-identification dataset with full annotations, named SLP, captured in the
multi-camera network consisting of nine non-overlapping cameras. Experimental
results using our person re-identification and public datasets show that the
proposed methods are promising for both person re-identification and camera
topology inference tasks.Comment: 14 pages, 14 figures, 6 table
Multi-scale analysis of lung computed tomography images
A computer-aided detection (CAD) system for the identification of lung
internal nodules in low-dose multi-detector helical Computed Tomography (CT)
images was developed in the framework of the MAGIC-5 project. The three modules
of our lung CAD system, a segmentation algorithm for lung internal region
identification, a multi-scale dot-enhancement filter for nodule candidate
selection and a multi-scale neural technique for false positive finding
reduction, are described. The results obtained on a dataset of low-dose and
thin-slice CT scans are shown in terms of free response receiver operating
characteristic (FROC) curves and discussed.Comment: 18 pages, 12 low-resolution figure
A fine-grained approach to scene text script identification
This paper focuses on the problem of script identification in unconstrained
scenarios. Script identification is an important prerequisite to recognition,
and an indispensable condition for automatic text understanding systems
designed for multi-language environments. Although widely studied for document
images and handwritten documents, it remains an almost unexplored territory for
scene text images.
We detail a novel method for script identification in natural images that
combines convolutional features and the Naive-Bayes Nearest Neighbor
classifier. The proposed framework efficiently exploits the discriminative
power of small stroke-parts, in a fine-grained classification framework.
In addition, we propose a new public benchmark dataset for the evaluation of
joint text detection and script identification in natural scenes. Experiments
done in this new dataset demonstrate that the proposed method yields state of
the art results, while it generalizes well to different datasets and variable
number of scripts. The evidence provided shows that multi-lingual scene text
recognition in the wild is a viable proposition. Source code of the proposed
method is made available online
Active User Authentication for Smartphones: A Challenge Data Set and Benchmark Results
In this paper, automated user verification techniques for smartphones are
investigated. A unique non-commercial dataset, the University of Maryland
Active Authentication Dataset 02 (UMDAA-02) for multi-modal user authentication
research is introduced. This paper focuses on three sensors - front camera,
touch sensor and location service while providing a general description for
other modalities. Benchmark results for face detection, face verification,
touch-based user identification and location-based next-place prediction are
presented, which indicate that more robust methods fine-tuned to the mobile
platform are needed to achieve satisfactory verification accuracy. The dataset
will be made available to the research community for promoting additional
research.Comment: 8 pages, 12 figures, 6 tables. Best poster award at BTAS 201
Multi-camera trajectory forecasting : pedestrian trajectory prediction in a network of cameras
We introduce the task of multi-camera trajectory forecasting (MCTF), where the future trajectory of an object is predicted in a network of cameras. Prior works consider forecasting trajectories in a single camera view. Our work is the first to consider the challenging scenario of forecasting across multiple non-overlapping camera views. This has wide applicability in tasks such as re-identification and multi-target multi-camera tracking. To facilitate research in this new area, we release the Warwick-NTU Multi-camera Forecasting Database (WNMF), a unique dataset of multi-camera pedestrian trajectories from a network of 15 synchronized cameras. To accurately label this large dataset (600 hours of video footage), we also develop a semi-automated annotation method. An effective MCTF model should proactively anticipate where and when a person will re-appear in the camera network. In this paper, we consider the task of predicting the next camera a pedestrian will re-appear after leaving the view of another camera, and present several baseline approaches for this. The labeled database is available online https://github.com/olly-styles/Multi-Camera-Trajectory-Forecastin
Multispectral Palmprint Encoding and Recognition
Palmprints are emerging as a new entity in multi-modal biometrics for human
identification and verification. Multispectral palmprint images captured in the
visible and infrared spectrum not only contain the wrinkles and ridge structure
of a palm, but also the underlying pattern of veins; making them a highly
discriminating biometric identifier. In this paper, we propose a feature
encoding scheme for robust and highly accurate representation and matching of
multispectral palmprints. To facilitate compact storage of the feature, we
design a binary hash table structure that allows for efficient matching in
large databases. Comprehensive experiments for both identification and
verification scenarios are performed on two public datasets -- one captured
with a contact-based sensor (PolyU dataset), and the other with a contact-free
sensor (CASIA dataset). Recognition results in various experimental setups show
that the proposed method consistently outperforms existing state-of-the-art
methods. Error rates achieved by our method (0.003% on PolyU and 0.2% on CASIA)
are the lowest reported in literature on both dataset and clearly indicate the
viability of palmprint as a reliable and promising biometric. All source codes
are publicly available.Comment: Preliminary version of this manuscript was published in ICCV 2011. Z.
Khan A. Mian and Y. Hu, "Contour Code: Robust and Efficient Multispectral
Palmprint Encoding for Human Recognition", International Conference on
Computer Vision, 2011. MATLAB Code available:
https://sites.google.com/site/zohaibnet/Home/code
- …
