66,409 research outputs found

    Variations on Multi-Core Nested Depth-First Search

    Get PDF
    Recently, two new parallel algorithms for on-the-fly model checking of LTL properties were presented at the same conference: Automated Technology for Verification and Analysis, 2011. Both approaches extend Swarmed NDFS, which runs several sequential NDFS instances in parallel. While parallel random search already speeds up detection of bugs, the workers must share some global information in order to speed up full verification of correct models. The two algorithms differ considerably in the global information shared between workers, and in the way they synchronize. Here, we provide a thorough experimental comparison between the two algorithms, by measuring the runtime of their implementations on a multi-core machine. Both algorithms were implemented in the same framework of the model checker LTSmin, using similar optimizations, and have been subjected to the full BEEM model database. Because both algorithms have complementary advantages, we constructed an algorithm that combines both ideas. This combination clearly has an improved speedup. We also compare the results with the alternative parallel algorithm for accepting cycle detection OWCTY-MAP. Finally, we study a simple statistical model for input models that do contain accepting cycles. The goal is to distinguish the speedup due to parallel random search from the speedup that can be attributed to clever work sharing schemes.Comment: In Proceedings PDMC 2011, arXiv:1111.006

    An efficient multi-core implementation of a novel HSS-structured multifrontal solver using randomized sampling

    Full text link
    We present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination, and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factorization leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite. The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK -- STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices

    Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems

    Get PDF
    To comprehend the hierarchical organization of large integrated systems, we introduce the hierarchical map equation, which reveals multilevel structures in networks. In this information-theoretic approach, we exploit the duality between compression and pattern detection; by compressing a description of a random walker as a proxy for real flow on a network, we find regularities in the network that induce this system-wide flow. Finding the shortest multilevel description of the random walker therefore gives us the best hierarchical clustering of the network, the optimal number of levels and modular partition at each level, with respect to the dynamics on the network. With a novel search algorithm, we extract and illustrate the rich multilevel organization of several large social and biological networks. For example, from the global air traffic network we uncover countries and continents, and from the pattern of scientific communication we reveal more than 100 scientific fields organized in four major disciplines: life sciences, physical sciences, ecology and earth sciences, and social sciences. In general, we find shallow hierarchical structures in globally interconnected systems, such as neural networks, and rich multilevel organizations in systems with highly separated regions, such as road networks.Comment: 11 pages, 5 figures. For associated code, see http://www.tp.umu.se/~rosvall/code.htm
    corecore