174 research outputs found

    Multi-User Multi-Carrier Differential Chaos Shift Keying Communication System

    Full text link
    In this paper, a multi user Multi-Carrier Differential Chaos Shift Keying (MC-DCSK) modulation is presented. The system endeavors to provide a good trade-off between robustness, energy efficiency and high data rate, while still being simple. In this architecture of MC-DCSK system, for each user, chaotic reference sequence is transmitted over a predefined subcarrier frequency. Multiple modulated data streams are transmitted over the remaining subcarriers allocated for each user. This transmitter structure saves energy and increases the spectral efficiency of the conventional DCSK system.Comment: Accepted in the IEEE International Wireless Communications and Mobile Computing Conference (IWCMC 2013

    Double-Stream Differential Chaos Shift Keying Communications Exploiting Chaotic Shape Forming Filter and Sequence Mapping

    Get PDF
    ACKNOWLEDGMENT This research have been supported in part by the Scientific and Technological Innovation Leading Talents Program of Shaanxi Province, China Postdoctoral Science Foundation Funded Project (2020M673349), Open Research Fund from Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing (2020CP02)Peer reviewedPostprin

    Chaos-Based Communication Systems

    Get PDF
    The attractive properties of chaos signal that is generated from dynamic systems motivate the researchers to explore the advantage of using this signal type as a carrier in different communication systems. In this chapter, different types of digital chaos–based communication system are discussed; in particular, digital communications where reference signal and its modulated version are transmitted together. This type is called differential coherent systems. Brief surveys on the recently developed systems are presented

    Permutation-based DCSK and multiple-access DCSK systems

    Get PDF
    Author name used in this publication: Francis C. M. LauAuthor name used in this publication: Kai Y. CheongAuthor name used in this publication: Chi K. Tse2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    A multiple access scheme for chaos-based digital communication systems utilizing transmitted reference

    Get PDF
    Author name used in this publication: Francis C. M. LauAuthor name used in this publication: Chi K. Tse2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    DESIGN AND PERFORMANCE ANALYSIS OF ORTHOGONAL MULTI-LEVEL CODE-SHIFTED DIFFERENTIAL CHAOS SHIFT KEYING COMMUNICATION SYSTEM

    Get PDF
    Based on Orthogonal Chaotic Vector Shift Keying (OCVSK) system and Multilevel Code-Shifted Differential Chaos Shift Keying (MCS-DCSK) system, a new Multilevel Code-Shifted Differential Chaos Shift Keying (OMCS-DCSK) modulation system is proposed and designed in this paper. New orthogonal chaotic signal sets are generated using Gram-Schmidt algorithm and Walsh code function then these signals are used for bearing information bits to achieve higher data rate and better bandwidth efficiency compared with the conventional DCSK communication system. The bit error rate (BER) analysis of the OMCS-DCSK system over additive white Gaussian noise (AWGN) and multipath Rayleigh fading channel is derived and compared with the simulation results. Also, the spectral and complexity analysis of the system are presented and compared with the conventional DCSK systems. The results show that the proposed system outperforms OCVSK and MCS-DCSK in BER performance and spectral efficienc

    Multigroup Synchronization in 1D-Bernoulli Chaotic Collaborative CDMA

    Get PDF

    Techniques in secure chaos communication

    Get PDF
    In today's climate of increased criminal attacks on the privacy of personal or confidential data over digital communication systems, a more secure physical communication link is required. Chaotic signals which have bifurcation behavior (depending on some initial condition) can readily be exploited to enhance the security of communication systems. A chaotic generator produces disordered sequences that provide very good auto- and cross- correlation properties similar to those of random white noise. This would be an important feature in multiple access environments. These sequences are used to scramble data in spread spectrum systems as they can produce low co-channel interference, hence improve the system capacity and performance. The chaotic signal can be created from only a single mathematical relationship and is neither restricted in length nor is repetitive/ cyclic. On the other hand, with the progress in digital signal processing and digital hardware, there has been an increased interest in using adaptive algorithms to improve the performance of digital systems. Adaptive algorithms provide the system with the ability to self-adjust its coefficients according to the signal condition, and can be used with linear or non-linear systems; hence, they might find application in chaos communication. There has been a lot of literature that proposed the use of LMS adaptive algorithm in the communication arena for a variety of applications such as (but not limited to): channel estimation, channel equalization, demodulation, de-noising, and beamforming. In this thesis, we conducted a study on the application of chaos theory in communication systems as well as the application of adaptive algorithms in chaos communication. The First Part of the thesis tackled the application of chaos theory in com- munication. We examined different types of communication techniques utilizing chaos theory. In particular, we considered chaos shift keying (CSK) and mod- ified kind of logistic map. Then, we applied space-time processing and eigen- beamforming technique to enhance the performance of chaos communication. Following on, we conducted a study on CSK and Chaos-CDMA in conjunction with multi-carrier modulation (MCM) techniques such as OFDM (FFT/ IFFT) and wavelet-OFDM. In the Second Part of the thesis, we tried to apply adaptivity to chaos com- munication. Initially, we presented a study of multi-user detection utilizing an adaptive algorithm in a chaotic CDMA multi-user environment, followed by a study of adaptive beamforming and modified weight-vector adaptive beam- forming over CSK communication. At last, a study of modified time-varying adaptive filtering is presented and a conventional adaptive filtering technique is applied in chaotic signal environment. Twelve papers have been published during the PhD candidature, include two journal papers and ten refereed conference papers

    A multiple-access technique for differential chaos-shift keying

    Get PDF
    Author name used in this publication: F. C. M. LauAuthor name used in this publication: C. K. TseAuthor name used in this publication: S. F. Hau2001-2002 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    corecore