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synchronization scheme used. For simulation purposes, taked(t) =
0:05. As seen in Fig. 4, the decryption errors(t)� sd(t) is so signifi-
cant that the recovered signalsd(t) is quite different from the message
signals(t) over the time interval[20; 20:6].

IV. CONCLUDING REMARKS

In this brief, a novel two-channel communication scheme using
chaotic systems has been presented and illustrated in Lorenz system.
A highly nonlinear encryption function, involving all chaotic states,
is used and can be chosen to yield strong sensitivity to the encryption
error and therefore guarantee higher security/privacy.
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A Multiple-Access Technique for Differential Chaos-Shift
Keying

F. C. M. Lau, M. M. Yip, C. K. Tse, and S. F. Hau

Abstract—A multiple-access technique for use with differential chaos
shift keying is proposed and analyzed in this paper. A simple one-dimen-
sional iterative map is used to generate the chaotic signals for all users and
the average data rates for the users are identical. Bit-error rates are de-
rived numerically for different number of users and computer simulations
are performed to verify the results.

Index Terms—Chaos communication, chaos shift keying, multiple access.

I. INTRODUCTION

Due to their continuous broadband feature, chaotic signals are useful
for encoding information in spread spectrum communications. When
a narrowband signal is spread over a much wider bandwidth, the av-
erage power spectral density (psd) becomes lower. As a consequence,
the signal psd becomes comparable with the background noise. Thus,
without prior knowledge of the transmission system, it is not easy to de-
tect the presence of the signal. Even if an unintended user detects the
presence of the signal, in the case where coherent detection is required,
it is very difficult to decode the data without prior knowledge of the en-
coding scheme. Recently, the application of chaotic signals in commu-
nications has received much attention. Chaotic masking [1] and chaotic
modulation [2] spread analog signals by chaotic signals, while in chaos
shift keying (CSK) [3]–[7] and predictive Poincaré control modulation
[8], binary data are spread. The basic CSK maps different symbols to
different chaotic attractors, which are produced by a dynamical system
for different values of a bifurcation parameter or by completely dif-
ferent dynamical systems [5], [6]. A coherent correlation CSK receiver
is then required at the receiving end to decode the signals. Noncoherent
detection is also possible provided the signals generated by the dif-
ferent attractors have different attributes, such as mean of the absolute
value, variance and standard deviation. The optimal decision level of
the threshold detector will depend on the signal-to-noise ratio in gen-
eral, although specific examples with noise-invariant threshold can be
designed for CSK. As in other communication systems, its performance
increases with the symbol energy or equivalently, the signal-to-noise
ratio [9].

To overcome the threshold level shift problem, differential CSK
(DCSK) has been proposed [3]–[6]. The advantage of DCSK over
CSK is that the threshold level is always set at zero and is independent
of the noise effect. It has been shown by Kis [7] that for a given
noise level, the variance in the estimation of the parameters of chaotic
sample functions can be reduced by increasing the length of the chaotic
sample or the bandwidth of the carrier. Unfortunately, the variance in
the estimation depends on both the characteristics of the chaotic carrier
and the channel noise. In the differentially coherent DCSK system,
the longer the bit duration or the wider bandwidth of the transmitted
signal corrupts the noise performance [10], [11]. Optimum values for
the bit duration have been investigated by Sushchiket al. [12].
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In conventional communication systems, the allocated spectrum is
shared by a number of users. Multiple-access techniques such as fre-
quency-division multiple access (FDMA), time-division multiple ac-
cess (TDMA) and code-division multiple access (CDMA) are com-
monly used. Similar to CDMA, CSK/DCSK spreads the spectrum of
the data signal over a much larger bandwidth as compared to FDMA
and TDMA. As a result, multiple access becomes an essential feature
for practical implementation of the system. Furthermore, it is impera-
tive that more users are included in the same bandwidth without causing
excessive interference to one another.

A few multiple-access schemes have been proposed recently for
chaos-based communication systems. In Carrollet al. [13], a method
based on multiplexing chaotic signals has been proposed. Also,
novel approaches for generating spreading codes using chaotic func-
tions have been applied to conventional CDMA systems [14]–[16].
Furthermore, multiple access using DCSK has been introduced by
Kolumbán et al. [17], [18] and the multiple-access capability of
frequency-modulated DCSK (FM-DCSK) has been studied by Jáko
et al. [19]. In both cases, two chaotic basis functions have been used
as an illustration to transmit two streams of data at the same time
in the same frequency band. The bit period is first divided into four
time slots. For the first signal, the reference sample is divided into
two parts which are sent in the first and third time slots. Similarly,
the data sample is also divided into two parts which are sent in the
second and fourth time slots. In order to obtain orthogonality between
the transmitted signals, the order of transmission is changed for the
second signal. Its reference sample is sent in the first two slots while
the data sample is transmitted in the third and fourth slots. If the
two chaotic basis functions are uncorrelated, the two signals will not
affect each other when appropriate demodulation techniques are used.
When the number of users increases, however, the number of time
slots created in each bit duration would also increase, implying that
switching between the reference and data samples will be performed
more frequently within the same bit period. This will impose more
stringent requirements on the switching circuits in both the transmitter
and the receiver.

In this paper, an alternative multiple-access technique for use with
DCSK (MA-DCSK) is proposed and analyzed. The proposed scheme
gives equal average data rates of all users. As in a single-user DCSK
system, each bit duration is always divided into two time slots for all
users. Hence, the requirements on the switching circuits in the trans-
mitter and the receiver will be similar compared with the single-user
system. To minimize the correlation between signals, the frame periods
and the arrangements of the reference and sample waveforms of all
users are different. To evaluate the effectiveness of the scheme, a simple
one-dimensional (1–D) iterative map is used to generate the chaotic sig-
nals for all users. As would be expected, the proposed scheme achieves
similar error probabilities for all users and the error performance de-
grades as the number of users increases. However, we show that when
the correlation between samples of the same/different chaotic signals
is low, achieved by using a large spreading factor, a low bit-error rate
(BER) can be achieved. Numerical BERs are also derived and com-
pared with the simulation results. In Section II, the operation of DCSK
is briefly reviewed. Section III describes the system model and the pro-
posed multiple-access technique in detail. The statistical properties of
the detected signal and a numerical analysis are discussed in Section IV.
The BERs and the overall system capacity are presented in Section V.
Finally, a comparison between the proposed scheme and the one by
Jákoet al. [19] is given in Section VI.

II. REVIEW OF DIFFERENTIAL CHAOS-SHIFT KEYING (DCSK)

DCSK was first proposed by Kolumbánet al.[3]. By using a chaotic
carrier to spread the digital signal over a large bandwidth, the spread

signal possesses some of the advantages of spread spectrum commu-
nications such as mitigation of multipath fading and low probability of
detection. In DCSK, the signal can also be decoded using noncoherent
detection. This section briefly reviews the basic operation of DCSK
which will be helpful in understanding the multiple-access scheme that
follows.

In DCSK, each bit duration is first divided into two equal time slots
and every transmitted symbol is represented by a pair of chaotic signal
samples sent in the two slots. The first sample serves as the reference
(reference sample) while the second one carries the data (data sample)
[3]–[6]. If a “+1” is to be transmitted, the data sample will be identical
to the reference sample, and if a “�1” is to be transmitted, an inverted
version of the reference sample will be used as the data sample. Assume
the system is discrete and starts atk = 0. Let 2� be the spreading
factor, defined as the number of time units occupied by a binary symbol,
where� is an integer. Fig. 1 shows a typical transmitted waveform,
denoted bys(k), for a spreading factor of 10. At the receiving end,
the reference sample and the corresponding data sample are correlated.
Depending on whether the output is larger or smaller than the threshold
zero, a “+1” or “�1” is decoded. Fig. 2 shows the block diagram of
a DCSK correlator receiver and the output waveform of the correlator,
which is sampled at multiples of2� time units.

III. SYSTEM MODEL AND MULTIPLE ACCESSTECHNIQUE

In a multiple-access system, to avoid excessive interference and
hence mis-detection, the separation between the reference and data
samples must be different for different users. Here, we propose a
multiple-access scheme where the separation between the reference
and data samples differs for different users, as illustrated in Fig. 3.
For all users, the bit durations are first divided into 2 slots. For user
i, 2i consecutive slots are collected to form a frame. Hence, the slot
duration (half of bit duration) is the same for all users but the frame
periods are different for different users. In each frame of useri, the
first i slots (slots 1 toi) will be used to transmiti reference samples
while the remainingi slots (slotsi+1 to 2i) are used to transmiti data
samples. If a binary symbol “+1” is to be transmitted in sloti + 1,
the sample in slot 1 is repeated in sloti + 1, otherwise, an inverted
copy is sent. Similarly, in sloti + 2, the same or inverted copy of
the sample in slot 2 is sent, and so on. As a result, the reference and
data samples of useri will be separated byi slots. Therefore, within
a frame of lengthi bit periods (or2i time slots),i bits of information
will be sent. This corresponds to 1 bit per bit period. The data rates
of all users are thus the same. However, a buffer is required to store
the data before transmission. Fig. 4(a) shows the transmitter for the
ith user whose chaotic series is denoted byfxi(l)g. Fig. 5 depicts a
typical transmitted waveform for user 3 with a spreading factor of 10.

Without loss of generality, consider the output of theith transmitter
at timek during the first frame. If it belongs to one of the reference
samples, i.e.

k = �(mi � 1) + n for somen 2 f1; 2; . . . ; �g (1)

wheremi 2 f1; 2; . . . ; ig denotes the slot number, the output, de-
noted byzi(k), will equal to

zi(k) = xi(�(mi � 1) + n): (2)

On the other hand, if the output lies in one of the data sample slots, i.e.

k = �(mi + i� 1) + n for somen 2 f1; 2; : . . . ; �g (3)
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Fig. 1. A typical DCSK signal (spreading factor= 10).

wheremi+i(mi 2 f1; 2; . . . ; ig) denotes the slot number, the output
becomes

zi(k) = xi(�(mi � 1) + n)bi(mi) (4)

wherebi(j) 2 f�1; +1g denotes thejth transmitted symbol of useri.
Using the aforementioned notations, the output of transmitteri at

time k equals

zi(k) =

xi(�(mi � 1) + n)

whenk = �(mi � 1) + n

xi(�(mi � 1) + n)bi(mi)

whenk = �(mi + i� 1) + n

(5)

for somemi 2 f1; 2; . . . ; ig andn 2 f1; 2; . . . ; �g. The overall
transmitted signal of the whole system at timek, denoted byz(k), is
derived by summing the signals of all individual users, i.e.

z(k) =

N

i=1

zi(k) (6)

whereN represents the number of users in the system.
Fig. 4(b) shows the receiver of useri in a multi-user DCSK system.

At the receiving end, the time slots in the first half of each frame, i.e.,
first i slots, will correlate with those in the second half, i.e.,(i+ 1)th
to (2i)th slots. During the same time, the correlator output is sampled
every� time units before the correlator is reset. The output is then
compared with the threshold zero to determine whether a “+1” or “�1”
has been received. Fig. 6 depicts the correlator output and the decoded
symbols of user 3 in a five-user system, assuming a spreading factor of
2000. If the correlation between different samples from the same user
or samples from different users is low, a low BER is expected.

IV. NUMERICAL ANALYSIS

As derived in the previous section, the overall transmitted signal is
given byz(k) = N

i=1 zi(k). Ignoring the effect of noise and filters,

the same signal will arrive at each receiver input. Without loss of gen-
erality, consider themith transmitted symbol of useri during the first
frame,mi 2 f1; 2; . . . ; ig. To recover the data, the received signal in
themith slot will correlate with thati slots later, i.e., the(mi + i)th
slot. The output of the correlator, denoted byOi, is given by

Oi =

�(m �1)+�

k=�(m �1)+1

z(k)z(k+ �i): (7)

Substituting (6) in (7) gives

Oi =

�(m �1)+�

k=�(m �1)+1

N

u=1

N

v=1

zu(k)zv(k + �i)

=

N

u=1

N

v=1

�(m �1)+�

k=�(m �1)+1

zu(k)zv(k + �i) (8)

wherezu(k) andzv(k) denote the signals of usersu andv, respec-
tively. For brevity, we defineXi; u; v as

Xi; u; v =

�(m �1)+�

k=�(m �1)+1

zu(k)zv(k + �i): (9)

Hence,Oi can be written as

Oi =

N

u=1

N

v=1

Xi; u; v: (10)

The mean ofOi, denoted byOi, is evaluated from

Oi =

N

u=1

N

v=1

Xi; u; v =

N

u=1

N

v=1

Xi; u; v

=Xi; i; i +

N

u=1
u 6=i

Xi; u; u +

N

u=1
u6=v

N

v=1

Xi; u; v: (11)
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Fig. 2. (a) Block diagram of a DCSK correlator receiver. (b) Output of the correlator and the decoded symbols (spreading factor= 10).

Furthermore, if theXi; u; vs are all uncorrelated normal random vari-
ables,Oi, being the sum of these variables, is also normal with variance
given by

var(Oi) =

N

u=1

N

v=1

var(Xi;u; v)

=var(Xi; i; i) +

N

u=1
u 6=i

var(Xi;u; u) +

N

u=1
u6=v

N

v=1

var(Xi;u; v)

(12)

wherevar(Y ) denotes the variance ofY [20], [21].
In the sequel, we assume that the map

x(l+ 1) = g(x(l)) = 4x3(l)� 3x(l) (13)

is used to generate the chaotic signals for all users but with different ini-
tial conditions. With this choice ofg(:), it can be shown that the prob-
ability density function (pdf) ofx(l) is symmetrical along they-axis.
As a result, the expected value ofx(l) is zero. The means and variances

of the variablesXi; u; vs under three different cases (see Appendix) are
derived by extensive computer simulations and the values are tabulated
in Table I for spreading factors 200 and 2000.

Applying the central limit theorem [9] to each of theXi; u; vs, the
Xi; u; vs can be shown to be approximate normal with the approxima-
tion getting better with increasing�. Assume that allXi; u; vs are un-
correlated random variables. Therefore, we can apply (11) and (12) to
obtain, for� = 100 and 1000

Oi =
0:5�; \+1" is transmitted
�0:5�; \�1" is transmitted

(14)

and

var(Oi) = 0:125�+ 0:25�(N2
� 1): (15)

Since the output of the correlator is approximate normal with meanOi

and variancevar(Oi), the bit error rate (BER), denoted by BER, can
be obtained by

BER =Prob(Oi < 0j\+1" is transmitted)=2

+ Prob(Oi > 0j\�1" is transmitted)=2
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Fig. 3. Transmission scheme in a multiple-access differential chaos shift keying (MA-DCSK) system.

=
1

2
Q

0:5�

0:125�+ 0:25�(N2
� 1)

+
1

2
Q

0� (�0:5�)

0:125�+ 0:25�(N2
� 1)

=Q
0:5�

0:125�+ 0:25�(N2
� 1)

: (16)

TheQ-function in (16) is defined as [9]

Q(x) =
1

x

1p
2�

exp
�t2

2
dt: (17)

It can be observed from (15) thatvar(Oi) increases withN2. Hence,
the performance of the system will degrade quite rapidly with the
number of users, as indicated in Fig. 7.

V. RESULTS ONERRORPERFORMANCE ANDOVERALL CAPACITY

Simulations have been carried out to confirm the feasibility of the
proposed multiple-access scheme and to verify the foregoing numerical
analysis. Spreading factors 200 and 2000 are used. The number of users
in the system is assigned up to 50 and different initial conditions are
assigned to different users to generate the chaotic signals. 10 000 bits
are first sent from each user. Then, the number of errors received by
each user and the average number of errors among all users are noted.
Fig. 8 shows some typical results obtained. In this example, there are
10 users in the system. The average number of errors is 1562.3 and
6.8 for� = 100 and� = 1000, respectively. It can be observed that
all users receive similar number of errors. In other words, the scheme
achieves unbiased error probabilities for all users. The reason is that all
users are suffering from similar amount of interference from all other
users. Hence, the error rates are similar.

Fig. 7 compares the numerical BERs computed using (16) with the
simulation results. It can be observed that the simulation results match
very closely with the numerical ones. As mentioned in Section IV, the
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Fig. 4. (a) Transmitter of useri in a multiuser DCSK system with a spreading factor2�. (b) Receiver of useri in a multiuser DCSK system with a spreading
factor2�.

Fig. 5. A typical transmitted signal for user 3 in a multiple-access DCSK system (spreading factor= 10).

variance of the output of the correlator,var(Oi), increases withN2.
Hence, the BER becomes high when the number of users is large. On
the other hand, by using a higher spreading factor and hence lower
autocorrelation and cross-corrrelation values, the system performance
can be drastically improved under a noise free environment.

The overall capacity of the system is also evaluated for different
number of users and plotted in Fig. 7. The capacity of each user, de-
noted byC, is given byC = 1�H(BER) whereH(:) represents the
entropy function. The overall capacity of the system is simplyN times
the individual capacity. As shown in Fig. 7, when the number of users
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Fig. 6. Output of the correlator and the decoded symbols of user 3 in a five-user system (spreading factor= 2000).

TABLE I
STATISTICAL PROPERTIES OFX FOR SPREADING FACTORS200AND 2000

increases, the overall capacity increases initially because the small re-
duction of capacity of each individual is compensated by the additional
capacity of extra users. After reaching a maximum value (4.3 and 13.8
bits/bit duration for� = 100 and� = 1000 respectively), the overall
capacity starts to decrease because the extra capacity of an additional
user cannot compensate for the total reduction of capacity of the ex-
isting users.

VI. COMPARISONS ANDDISCUSSION

In this section, we compare our proposed multiple-access scheme
with the one reported earlier by Jákoet al. [18]. First of all, in both
schemes, one reference sample will correlate with the corresponding
data sample in order to decode the data. Similar interference will be
received by each user in both systems and hence similar BERs are ex-
pected. On the other hand, due to the different arrangements of the ref-
erence/data samples, the requirements for the two schemes are different
and each scheme has its own advantages and disadvantages.

Suppose there areN users in the system. In the multiple-access
scheme proposed by Jákoet al. each bit period is divided into2N

time slots. One reference/data sample pair of each user is first divided
into 2N parts and then transmitted in the2N time slots. The arrange-
ment of the parts in the time slots will be different for different users.

The scheme ensures that data can be decoded in every bit duration.
When the number of users increases, the number of time slots created in
each bit duration would increase exponentially, implying that switching
between the reference and data samples will be performed more fre-
quently within the same bit period. This will impose more stringent
requirements on the switching circuits in both the transmitter and the
receiver. In our proposed scheme, each bit period is always divided
into two slots for all users. The requirements on the switching circuits
in the transmitter and the receiver will be similar compared with the
single-user system. The price to pay, however, is that the frame periods
of different users are different. Since the user has to receive half of the
frame before demodulation can begin, different users will experience
different demodulation delay although the average bit rates of all users
are identical. Moreover, a buffer is required at the transmitter side to
store the arriving data when the transmitter is sending the reference
samples during the first half of the frame.

VII. CONCLUSIONS

In this paper, we have proposed a simple multiple-access scheme
for use with differential chaos shift keying (MA-DCSK). The access
scheme of different users has been described and the corresponding
noncoherent receiver has also been designed to decode the signals. As
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Fig. 7. Numerical and simulated bit error probabilities, and total system capacity against number of users in a multiuser DCSK system.

Fig. 8. Number of errors received for different users out of 10 000 transmitted
symbols.

in a single-user DCSK system, each bit period is always divided into
two slots for all users. Hence, the requirements on the switching cir-
cuits in the transmitter and the receiver is similar compared with the
single-user system. The trade-off, however, is that the frame periods of
different users are different. The user has to receive half of the frame
before demodulation can begin. As a consequence, different users will
experience different demodulation delays although the average bit rates
of all users are the same.

In order to evaluate the performance of the system, a simple 1-D
iterative map has been used to generate the chaotic signals for allN

users. For this particular choice of map where the probability den-

sity function of the chaotic signal is symmetrical with zero mean, it
is found that the correlator output follows an approximate normal dis-
tribution with variance increases withN2, provided the probabilities
of a “+1” or “�1” being transmitted are equal for all users. As a con-
sequence, the numerical BER of the system is derived. As would be
expected, the proposed scheme achieves similar error probabilities for
all users because all users are suffering from similar amount of inter-
ference from all other users. Moreover, the error performance degrades
as the number of users increases. Simulations are then carried out and
the results match very closely with the numerical BER. It is observed
that by using a higher spreading factor and hence lower autocorrelation
and cross-corrrelation values, the BER can be reduced under a noise-
less environment. The overall system capacity has also been evaluated
and it is found that different optimal values are obtained for different
spreading factors.

The proposed scheme can be applied to the downlink (base station
to mobile station) as well as the uplink (mobile station to base station)
in wireless communications. If the scheme is applied in the uplink, slot
synchronization among all participating users may be required, which
unfortunately is very difficult to maintain in practice. In the case when
the time slots among users are not synchronized, it is anticipated that
the interference between users will not vary much. As a result, the BER
performance should not be affected substantially. Detailed analysis and
more simulations are required to verify the conjecture. Finally, noise
appears in all communication systems. It is therefore of interest to study
the effect of noise in the MA-DCSK system and to derive similar nu-
merical solutions. This will be left to a future publication. On the other
hand, the DCSK scheme is known to be suboptimal in the amplitude
modulated version. An extension of the present numerical analysis to
the frequency modulated DCSK would also be worth studying.
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APPENDIX

The statistical properties ofXi; u; v , as defined in Section IV, are
investigated here for different combinations ofu, v andi. All symbols
have their meanings as defined in the paper.

Case I:u = v = i: The reference sample of theith user correlates
with the corresponding data sample. Since the data sample is derived
from the reference sample, with a possible factor of�1 due to the bi-
nary symbol, a high correlation value is expected.Xi; u; v is now re-ex-
pressed as

Xi; i; i =

�(m �1)+�

k=�(m �1)+1

zi(k)zi(k+ �i)

= bi(mi)

�(m �1)+�

l=�(m �1)+1

x
2
i (l): (A1)

For brevity, we letWi; i:i =
�(m �1)+�
l=�(m �1)+1 x

2
i (l). Hence, we have

Xi; i; i = bi(mi)Wi; i:i: (A2)

Applying the central limit theorem toWi; i:i shows thatWi; i:i is ap-
proximate normal with the approximation getting better with increasing
�.

Case II:u = v, u 6= i: One reference/data sample of theuth user
correlates with another reference/data samplei slots away. For theuth
user, the reference sample and its corresponding data sample are sep-
arated byu slots. Therefore, ifu 6= i, low correlation is expected be-
tween the reference/data samples separated byi slots.Xi; u; v is now
re-expressed as

Xi; u; u =

�(m �1)+�

k=�(m �1)+1

zu(k)zu(k+ �i): (A3)

It is obvious that for a zero-mean symmetrical pdf, a multiplication
of +1 or�1 does not change the shape of the pdf. Hence, forxu(l)

which has a symmetrical pdf with zero mean, the two signalszu(k)

andzu(k + �i), derived from multiplyingxu(l)s with+1 or�1 for
somels, would have the same pdf ofxu(l). DefineWi; u; u as

Wi; u; u =

�

m=1

xu(l1 +m)xu(l2 +m) (A4)

for some unequal valuesl1 andl2. The pdf ofXi; u; u would then have
the same pdf ofWi; u; u. Applying the central limit theorem again,
Wi; u; u and henceXi; u; u can be shown to be approximate normal
with better approximation with increasing�.

Case III:u 6= v: One reference/data sample of theuth user corre-
lates with the reference/data sample of another user (vth user)i slots
away. Since the samples are generated by chaos generators with dif-
ferent initial conditions [22], low correlation is expected. Rewrite (9)
here again

Xi; u; v =

�(m �1)+�

k=�(m �1)+1

zu(k)zv(k+ �i): (A5)

Similar to the previous case, forxu(l) which has a symmetrical pdf
with zero mean, the two signalszu(k) andzv(k + �i), derived from
multiplyingxu(l1) andxv(l2)with+1 or�1 for somel1 andl2, would
have the same pdf ofxu(l). DefineWi; u; v as

Wi; u; v =

�

m=1

xu(l1 +m)xv(l2 +m) (A6)

for some valuesl1 and l2. The pdf ofXi; u; v would have the same
pdf ofWi; u; v . Applying the central limit theorem again,Wi; u; v and
henceXi; u; v can be shown to be approximate normal with better ap-
proximation with increasing�.

Extensive simulations have been carried out on the chosen map (13)
to calculate the means and variances ofWi; i; i,Wi; u; u andWi; u; v in
the above three cases with spreading factors 200 and 2000. From the
results, the means and variances ofXi; u; vs are derived, as tabulated in
Table I.
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