3,456 research outputs found

    Collaborative Learning of Stochastic Bandits over a Social Network

    Full text link
    We consider a collaborative online learning paradigm, wherein a group of agents connected through a social network are engaged in playing a stochastic multi-armed bandit game. Each time an agent takes an action, the corresponding reward is instantaneously observed by the agent, as well as its neighbours in the social network. We perform a regret analysis of various policies in this collaborative learning setting. A key finding of this paper is that natural extensions of widely-studied single agent learning policies to the network setting need not perform well in terms of regret. In particular, we identify a class of non-altruistic and individually consistent policies, and argue by deriving regret lower bounds that they are liable to suffer a large regret in the networked setting. We also show that the learning performance can be substantially improved if the agents exploit the structure of the network, and develop a simple learning algorithm based on dominating sets of the network. Specifically, we first consider a star network, which is a common motif in hierarchical social networks, and show analytically that the hub agent can be used as an information sink to expedite learning and improve the overall regret. We also derive networkwide regret bounds for the algorithm applied to general networks. We conduct numerical experiments on a variety of networks to corroborate our analytical results.Comment: 14 Pages, 6 Figure

    Corrupt Bandits for Preserving Local Privacy

    Get PDF
    We study a variant of the stochastic multi-armed bandit (MAB) problem in which the rewards are corrupted. In this framework, motivated by privacy preservation in online recommender systems, the goal is to maximize the sum of the (unobserved) rewards, based on the observation of transformation of these rewards through a stochastic corruption process with known parameters. We provide a lower bound on the expected regret of any bandit algorithm in this corrupted setting. We devise a frequentist algorithm, KLUCB-CF, and a Bayesian algorithm, TS-CF and give upper bounds on their regret. We also provide the appropriate corruption parameters to guarantee a desired level of local privacy and analyze how this impacts the regret. Finally, we present some experimental results that confirm our analysis

    Online Clustering of Bandits

    Full text link
    We introduce a novel algorithmic approach to content recommendation based on adaptive clustering of exploration-exploitation ("bandit") strategies. We provide a sharp regret analysis of this algorithm in a standard stochastic noise setting, demonstrate its scalability properties, and prove its effectiveness on a number of artificial and real-world datasets. Our experiments show a significant increase in prediction performance over state-of-the-art methods for bandit problems.Comment: In E. Xing and T. Jebara (Eds.), Proceedings of 31st International Conference on Machine Learning, Journal of Machine Learning Research Workshop and Conference Proceedings, Vol.32 (JMLR W&CP-32), Beijing, China, Jun. 21-26, 2014 (ICML 2014), Submitted by Shuai Li (https://sites.google.com/site/shuailidotsli
    corecore