8,222 research outputs found

    On Partially Controlled Multi-Agent Systems

    Full text link
    Motivated by the control theoretic distinction between controllable and uncontrollable events, we distinguish between two types of agents within a multi-agent system: controllable agents, which are directly controlled by the system's designer, and uncontrollable agents, which are not under the designer's direct control. We refer to such systems as partially controlled multi-agent systems, and we investigate how one might influence the behavior of the uncontrolled agents through appropriate design of the controlled agents. In particular, we wish to understand which problems are naturally described in these terms, what methods can be applied to influence the uncontrollable agents, the effectiveness of such methods, and whether similar methods work across different domains. Using a game-theoretic framework, this paper studies the design of partially controlled multi-agent systems in two contexts: in one context, the uncontrollable agents are expected utility maximizers, while in the other they are reinforcement learners. We suggest different techniques for controlling agents' behavior in each domain, assess their success, and examine their relationship.Comment: See http://www.jair.org/ for any accompanying file

    The Hanabi Challenge: A New Frontier for AI Research

    Full text link
    From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making. In recent years, machine learning has made dramatic advances with artificial agents reaching superhuman performance in challenge domains like Go, Atari, and some variants of poker. As with their predecessors of chess, checkers, and backgammon, these game domains have driven research by providing sophisticated yet well-defined challenges for artificial intelligence practitioners. We continue this tradition by proposing the game of Hanabi as a new challenge domain with novel problems that arise from its combination of purely cooperative gameplay with two to five players and imperfect information. In particular, we argue that Hanabi elevates reasoning about the beliefs and intentions of other agents to the foreground. We believe developing novel techniques for such theory of mind reasoning will not only be crucial for success in Hanabi, but also in broader collaborative efforts, especially those with human partners. To facilitate future research, we introduce the open-source Hanabi Learning Environment, propose an experimental framework for the research community to evaluate algorithmic advances, and assess the performance of current state-of-the-art techniques.Comment: 32 pages, 5 figures, In Press (Artificial Intelligence

    Learning with Opponent-Learning Awareness

    Full text link
    Multi-agent settings are quickly gathering importance in machine learning. This includes a plethora of recent work on deep multi-agent reinforcement learning, but also can be extended to hierarchical RL, generative adversarial networks and decentralised optimisation. In all these settings the presence of multiple learning agents renders the training problem non-stationary and often leads to unstable training or undesired final results. We present Learning with Opponent-Learning Awareness (LOLA), a method in which each agent shapes the anticipated learning of the other agents in the environment. The LOLA learning rule includes a term that accounts for the impact of one agent's policy on the anticipated parameter update of the other agents. Results show that the encounter of two LOLA agents leads to the emergence of tit-for-tat and therefore cooperation in the iterated prisoners' dilemma, while independent learning does not. In this domain, LOLA also receives higher payouts compared to a naive learner, and is robust against exploitation by higher order gradient-based methods. Applied to repeated matching pennies, LOLA agents converge to the Nash equilibrium. In a round robin tournament we show that LOLA agents successfully shape the learning of a range of multi-agent learning algorithms from literature, resulting in the highest average returns on the IPD. We also show that the LOLA update rule can be efficiently calculated using an extension of the policy gradient estimator, making the method suitable for model-free RL. The method thus scales to large parameter and input spaces and nonlinear function approximators. We apply LOLA to a grid world task with an embedded social dilemma using recurrent policies and opponent modelling. By explicitly considering the learning of the other agent, LOLA agents learn to cooperate out of self-interest. The code is at github.com/alshedivat/lola

    Modeling Mutual Influence in Multi-Agent Reinforcement Learning

    Get PDF
    In multi-agent systems (MAS), agents rarely act in isolation but tend to achieve their goals through interactions with other agents. To be able to achieve their ultimate goals, individual agents should actively evaluate the impacts on themselves of other agents' behaviors before they decide which actions to take. The impacts are reciprocal, and it is of great interest to model the mutual influence of agent's impacts with one another when they are observing the environment or taking actions in the environment. In this thesis, assuming that the agents are aware of each other's existence and their potential impact on themselves, I develop novel multi-agent reinforcement learning (MARL) methods that can measure the mutual influence between agents to shape learning. The first part of this thesis outlines the framework of recursive reasoning in deep multi-agent reinforcement learning. I hypothesize that it is beneficial for each agent to consider how other agents react to their behavior. I start from Probabilistic Recursive Reasoning (PR2) using level-1 reasoning and adopt variational Bayes methods to approximate the opponents' conditional policies. Each agent shapes the individual Q-value by marginalizing the conditional policies in the joint Q-value and finding the best response to improving their policies. I further extend PR2 to Generalized Recursive Reasoning (GR2) with different hierarchical levels of rationality. GR2 enables agents to possess various levels of thinking ability, thereby allowing higher-level agents to best respond to less sophisticated learners. The first part of the thesis shows that eliminating the joint Q-value to an individual Q-value via explicitly recursive reasoning would benefit the learning. In the second part of the thesis, in reverse, I measure the mutual influence by approximating the joint Q-value based on the individual Q-values. I establish Q-DPP, an extension of the Determinantal Point Process (DPP) with partition constraints, and apply it to multi-agent learning as a function approximator for the centralized value function. An attractive property of using Q-DPP is that when it reaches the optimum value, it can offer a natural factorization of the centralized value function, representing both quality (maximizing reward) and diversity (different behaviors). In the third part of the thesis, I depart from the action-level mutual influence and build a policy-space meta-game to analyze agents' relationship between adaptive policies. I present a Multi-Agent Trust Region Learning (MATRL) algorithm that augments single-agent trust region policy optimization with a weak stable fixed point approximated by the policy-space meta-game. The algorithm aims to find a game-theoretic mechanism to adjust the policy optimization steps that force the learning of all agents toward the stable point
    • …
    corecore