27 research outputs found

    Reconstruction of Multiway Arrays from Incomplete Information Using the Tucker Tensor Decomposition

    Get PDF
    Tensor decomposition models for multidimensional datasets (multiway arrays) have a long history in Mathematics and applied sciences. While these models have recently been applied to multidimensional signal processing, they were developed independently of the theory of sparse representations and Compressed Sensing (CS). We discuss and illustrate recent results revealing connections among tensor decompositions models, recovery of low-rank multidimensional signals and CS theory. It is shown that, if a multidimensional signal has a good low rank or sparse multilinear representation, in the sense of the Tucker decomposition model, then it can be reconstructed from incomplete measurements. We discuss reconstructions methods for the cases where only a subset of fibers (mode-n vectors) in each dimension of the signal are available (Fiber Sampling Tensor Decomposition - FSTD), or when only the values of a limited set of entries are known (Tensor completion or multidimensional inpainting problem) or when measurements are given in a compressed multilinear format (Kronecker CS). We illustrate these methods by computer simulations taken on real world multidimensional signals including Magnetic Resonance Imaging (MRI) datasets and Hyperspectral images of natural scenes.Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaNew Trends in Applied Harmonic Analysis Sparse Representations, Compressed Sensing and Multifractal Analysis (CIMPA 2013)Mar del PlataArgentinaUniversidad de Buneos Aire

    Stable, Robust and Super Fast Reconstruction of Tensors Using Multi-Way Projections

    Get PDF
    In the framework of multidimensional Compressed Sensing (CS), we introduce an analytical reconstruction formula that allows one to recover an NNth-order (I1×I2×⋯×IN)(I_1\times I_2\times \cdots \times I_N) data tensor X‾\underline{\mathbf{X}} from a reduced set of multi-way compressive measurements by exploiting its low multilinear-rank structure. Moreover, we show that, an interesting property of multi-way measurements allows us to build the reconstruction based on compressive linear measurements taken only in two selected modes, independently of the tensor order NN. In addition, it is proved that, in the matrix case and in a particular case with 33rd-order tensors where the same 2D sensor operator is applied to all mode-3 slices, the proposed reconstruction X‾τ\underline{\mathbf{X}}_\tau is stable in the sense that the approximation error is comparable to the one provided by the best low-multilinear-rank approximation, where τ\tau is a threshold parameter that controls the approximation error. Through the analysis of the upper bound of the approximation error we show that, in the 2D case, an optimal value for the threshold parameter τ=τ0>0\tau=\tau_0 > 0 exists, which is confirmed by our simulation results. On the other hand, our experiments on 3D datasets show that very good reconstructions are obtained using τ=0\tau=0, which means that this parameter does not need to be tuned. Our extensive simulation results demonstrate the stability and robustness of the method when it is applied to real-world 2D and 3D signals. A comparison with state-of-the-arts sparsity based CS methods specialized for multidimensional signals is also included. A very attractive characteristic of the proposed method is that it provides a direct computation, i.e. it is non-iterative in contrast to all existing sparsity based CS algorithms, thus providing super fast computations, even for large datasets.Comment: Submitted to IEEE Transactions on Signal Processin
    corecore