399 research outputs found

    Multi-view Video Coding for 3DTV

    Get PDF
    With the advent in display technology, the 3DTV will provide a new viewing experience without the need of wearing special glasses to watch the 3D scenes. One of the key elements in 3DTV is the multi-view video coding; obtained from a set of synchronized cameras, capture the same scene from different viewpoints. The video streams are synchronized and subsequently used to exploit the redundancy contained among video sources. A multi-view video consists of components for data acquisition, compression, transmission and display. This paper outlines the design and implementation of a multi-view video system for transmission over a wireless channel. Synchronized video sequences acquired from four separate cameras and coded with H.264/AVC

    A Novel H.264/AVC Based Multi-View Video Coding Scheme

    Get PDF

    Multi-view video coding via virtual view generation

    Get PDF
    In this paper, a multi-view video coding method via generation of virtual picture sequences is proposed. Pictures are synthesized for the sake of better exploitation of the redundancies between neighbouring views in a multi-view sequence. Pictures are synthesized through a 3D warping method to estimate certain views in a multi-view set. Depth map and associated colour video sequences are used for view generation and tests. H. 264/AVC coding standard based MVC draft software is used for coding colour videos and depth maps as well as certain views which are predicted from the virtually generated views. Results for coding these views with the proposed method are compared against the reference H. 264/AVC simulcast method under some low delay coding scenarios. The rate-distortion performance of the proposed method outperforms that of the reference method at all bit-rates

    Exploiting depth information for fast multi-view video coding

    Get PDF
    This research work is partially funded by the Strategic Educational Pathways Scholarship Scheme (STEPS-Malta). This scholarship is partly financed by the European Union – European Social Fund (ESF 1.25).Multi-view video coding exploits inter-view redundancies to compress the video streams and their associated depth information. These techniques utilize disparity estimation techniques to obtain disparity vectors (DVs) across different views. However, these methods contribute to the majority of the computational power needed for multi-view video encoding. This paper proposes a solution for fast disparity estimation based on multi-view geometry and depth information. A DV predictor is first calculated followed by an iterative or a fast search estimation process which finds the optimal DV in the search area dictated by the predictor. Simulation results demonstrate that this predictor is reliable enough to determine the area of the optimal DVs to allow a smaller search range. Furthermore, results show that the proposed approach achieves a speedup of 2.5 while still preserving the original rate-distortion performance.peer-reviewe

    Multi-view Video Coding for Wireless Channel

    Get PDF
    In this paper, a multi-view video system for wireless applications will be presented. The system consists of components for data acquisition, compression, transmission and display. The main feature of the system includes wireless video transmission system for up to four cameras, by which videos can be acquired, encoded and transmitted wirelessly to a receiving station. The video streams can be displayed on a single 3D or on multiple 2D displays. The encoding for the multi-view video through inter-view and temporal redundancies increased the compression rates. The H.264/AVC multi-view compression techniques has been exploited and tested during the implementation process. The video data is then transmitted over a simulated Rayleigh channel through Digital Video Broadcasting – Terrestrial (DVB-T) system with Orthogonal Frequency Division Multiplexing (OFDM). One of the highlights in this paper is the low cost implementation of a multi-view video system, which using only typical web cameras attached to a single PC

    Performance of enhanced error concealment techniques in multi-view video coding systems

    Get PDF
    This research work is partially funded by the Strategic Educational Pathways Scholarship Scheme (STEPS-Malta). This scholarship is partly financed by the European Union - European Social Fund (ESF 1.25).Transmission of multi-view video encoded bit-streams over error-prone channels demands robust error concealment techniques. This paper studies the performance of solutions that exploit the neighbourhood spatial, temporal and inter-view information for this scope. Furthermore, different boundary distortion measurements, motion compensation refinement and temporal error concealment of Anchor frames were exploited to improve the results obtained by the basic error concealment techniques. Results show that a gain in performance is obtained with the implementation of each independent concealment technique. Furthermore, Peak Signal-to-Noise Ratio (PSNR) gains of about 4dB relative to the standard were achieved when adopting a hybrid error concealment approach.peer-reviewe

    Prediction architecture based on block matching statistics for mixed spatial-resolution multi-view video coding

    Get PDF
    The use of mixed spatial resolutions in multi-view video coding is a promising approach for coding videos efficiently at low bitrates. It can achieve a perceived quality, which is close to the view with the highest quality, according to the suppression theory of binocular vision. The aim of the work reported in this paper is to develop a new multi-view video coding technique suitable for low bitrate applications in terms of coding efficiency, computational and memory complexity, when coding videos, which contain either a single or multiple scenes. The paper proposes a new prediction architecture that addresses deficiencies of prediction architectures for multi-view video coding based on H.264/AVC. The prediction architectures which are used in mixed spatial-resolution multi-view video coding (MSR-MVC) are afflicted with significant computational complexity and require significant memory size, with regards to coding time and to the minimum number of reference frames. The architecture proposed herein is based on a set of investigations, which explore the effect of different inter-view prediction directions on the coding efficiency of multi-view video coding, conduct a comparative study of different decimation and interpolation methods, in addition to analyzing block matching statistics. The proposed prediction architecture has been integrated with an adaptive reference frame ordering algorithm, to provide an efficient coding solution for multi-view videos with hard scene changes. The paper includes a comparative performance assessment of the proposed architecture against an extended architecture based on the 3D digital multimedia broadcast (3D-DMB) and the Hierarchical B-Picture (HBP) architecture, which are two most widely used architectures for MSR-MVC. The assessment experiments show that the proposed architecture needs less bitrate by on average 13.1 Kbps, less coding time by 14% and less memory consumption by 31.6%, compared to a corresponding codec, which deploys the extended 3D-DMB architecture when coding single-scene videos. Furthermore, the codec, which deploys the proposed architecture, accelerates coding by on average 57% and requires 52% less memory, compared to a corresponding codec, which uses the HBP architecture. On the other hand, multi-view video coding which uses the proposed architecture needs more bitrate by on average 24.9 Kbps compared to a corresponding codec that uses the HBP architecture. For coding a multi-view video which has hard scene changes, the proposed architecture yields less bitrate (by on average 28.7 to 35.4 Kbps), and accelerates coding time (by on average 64 and 33%), compared to the HBP and extended 3D-DMB architectures, respectively. The proposed architecture will thus be most beneficial in low bitrate applications, which require multi-view video coding for video content depicting hard scene changes

    Exploiting depth information for fast motion and disparity estimation in multi-view video coding

    Get PDF
    This research work is partially funded by the Strategic Educational Pathways Scholarship Scheme (STEPS-Malta). This scholarship is partly financed by the European Union – European Social Fund (ESF 1.25).Multi-view Video Coding (MVC) employs both motion and disparity estimation within the encoding process. These provide a significant increase in coding efficiency at the expense of a substantial increase in computational requirements. This paper presents a fast motion and disparity estimation technique that utilizes the multi-view geometry together with the depth information and the corresponding encoded motion vectors from the reference view, to produce more reliable motion and disparity vector predictors for the current view. This allows for a smaller search area which reduces the computational cost of the multi-view encoding system. Experimental results confirm that the proposed techniques can provide a speed-up gain of up to 4.2 times, with a negligible loss in the rate-distortion performance for both the color and the depth MVC.peer-reviewe

    Fast mode decision for Multiview Video Coding based on scene geometry

    Full text link
    A new fast mode decision (FMD) algorithm for multi-view video coding (MVC) is presented. The codification of the views is based on the analysis of the homogeneity of the depth map and corrected with the motion analysis of a reference view, which is encoded based on traditional methods and on the use of the disparity differences between the views. This approach reduces the burden of the rate-distortion motion analysis using the availability of a depth map and the presence of the disparity vectors, which are assumed to be provided by the acquisition proces
    • …
    corecore