15,503 research outputs found

    Collaborative Artificial Intelligence Algorithms for Medical Imaging Applications

    Get PDF
    In this dissertation, we propose novel machine learning algorithms for high-risk medical imaging applications. Specifically, we tackle current challenges in radiology screening process and introduce cutting-edge methods for image-based diagnosis, detection and segmentation. We incorporate expert knowledge through eye-tracking, making the whole process human-centered. This dissertation contributes to machine learning, computer vision, and medical imaging research by: 1) introducing a mathematical formulation of radiologists level of attention, and sparsifying their gaze data for a better extraction and comparison of search patterns. 2) proposing novel, local and global, image analysis algorithms. Imaging based diagnosis and pattern analysis are high-risk Artificial Intelligence applications. A standard radiology screening procedure includes detection, diagnosis and measurement (often done with segmentation) of abnormalities. We hypothesize that having a true collaboration is essential for a better control mechanism, in such applications. In this regard, we propose to form a collaboration medium between radiologists and machine learning algorithms through eye-tracking. Further, we build a generic platform consisting of novel machine learning algorithms for each of these tasks. Our collaborative algorithm utilizes eye tracking and includes an attention model and gaze-pattern analysis, based on data clustering and graph sparsification. Then, we present a semi-supervised multi-task network for local analysis of image in radiologists\u27 ROIs, extracted in the previous step. To address missing tumors and analyze regions that are completely missed by radiologists during screening, we introduce a detection framework, S4ND: Single Shot Single Scale Lung Nodule Detection. Our proposed detection algorithm is specifically designed to handle tiny abnormalities in lungs, which are easy to miss by radiologists. Finally, we introduce a novel projective adversarial framework, PAN: Projective Adversarial Network for Medical Image Segmentation, for segmenting complex 3D structures/organs, which can be beneficial in the screening process by guiding radiologists search areas through segmentation of desired structure/organ

    Curriculum semi-supervised segmentation

    Full text link
    This study investigates a curriculum-style strategy for semi-supervised CNN segmentation, which devises a regression network to learn image-level information such as the size of a target region. These regressions are used to effectively regularize the segmentation network, constraining softmax predictions of the unlabeled images to match the inferred label distributions. Our framework is based on inequality constraints that tolerate uncertainties with inferred knowledge, e.g., regressed region size, and can be employed for a large variety of region attributes. We evaluated our proposed strategy for left ventricle segmentation in magnetic resonance images (MRI), and compared it to standard proposal-based semi-supervision strategies. Our strategy leverages unlabeled data in more efficiently, and achieves very competitive results, approaching the performance of full-supervision.Comment: Accepted as paper as MICCAI 2O1
    • …
    corecore