978 research outputs found

    Michelangelo: Conditional 3D Shape Generation based on Shape-Image-Text Aligned Latent Representation

    Full text link
    We present a novel alignment-before-generation approach to tackle the challenging task of generating general 3D shapes based on 2D images or texts. Directly learning a conditional generative model from images or texts to 3D shapes is prone to producing inconsistent results with the conditions because 3D shapes have an additional dimension whose distribution significantly differs from that of 2D images and texts. To bridge the domain gap among the three modalities and facilitate multi-modal-conditioned 3D shape generation, we explore representing 3D shapes in a shape-image-text-aligned space. Our framework comprises two models: a Shape-Image-Text-Aligned Variational Auto-Encoder (SITA-VAE) and a conditional Aligned Shape Latent Diffusion Model (ASLDM). The former model encodes the 3D shapes into the shape latent space aligned to the image and text and reconstructs the fine-grained 3D neural fields corresponding to given shape embeddings via the transformer-based decoder. The latter model learns a probabilistic mapping function from the image or text space to the latent shape space. Our extensive experiments demonstrate that our proposed approach can generate higher-quality and more diverse 3D shapes that better semantically conform to the visual or textural conditional inputs, validating the effectiveness of the shape-image-text-aligned space for cross-modality 3D shape generation.Comment: 20 pages, 11 figure

    MFM-Net: Unpaired Shape Completion Network with Multi-stage Feature Matching

    Full text link
    Unpaired 3D object completion aims to predict a complete 3D shape from an incomplete input without knowing the correspondence between the complete and incomplete shapes during training. To build the correspondence between two data modalities, previous methods usually apply adversarial training to match the global shape features extracted by the encoder. However, this ignores the correspondence between multi-scaled geometric information embedded in the pyramidal hierarchy of the decoder, which makes previous methods struggle to generate high-quality complete shapes. To address this problem, we propose a novel unpaired shape completion network, named MFM-Net, using multi-stage feature matching, which decomposes the learning of geometric correspondence into multi-stages throughout the hierarchical generation process in the point cloud decoder. Specifically, MFM-Net adopts a dual path architecture to establish multiple feature matching channels in different layers of the decoder, which is then combined with the adversarial learning to merge the distribution of features from complete and incomplete modalities. In addition, a refinement is applied to enhance the details. As a result, MFM-Net makes use of a more comprehensive understanding to establish the geometric correspondence between complete and incomplete shapes in a local-to-global perspective, which enables more detailed geometric inference for generating high-quality complete shapes. We conduct comprehensive experiments on several datasets, and the results show that our method outperforms previous methods of unpaired point cloud completion with a large margin

    OneGAN: Simultaneous Unsupervised Learning of Conditional Image Generation, Foreground Segmentation, and Fine-Grained Clustering

    Full text link
    We present a method for simultaneously learning, in an unsupervised manner, (i) a conditional image generator, (ii) foreground extraction and segmentation, (iii) clustering into a two-level class hierarchy, and (iv) object removal and background completion, all done without any use of annotation. The method combines a Generative Adversarial Network and a Variational Auto-Encoder, with multiple encoders, generators and discriminators, and benefits from solving all tasks at once. The input to the training scheme is a varied collection of unlabeled images from the same domain, as well as a set of background images without a foreground object. In addition, the image generator can mix the background from one image, with a foreground that is conditioned either on that of a second image or on the index of a desired cluster. The method obtains state of the art results in comparison to the literature methods, when compared to the current state of the art in each of the tasks.Comment: To be published in the European Conference on Computer Vision (ECCV) 202
    • …
    corecore