26 research outputs found

    FACE, GENDER AND RACE CLASSIFICATION USING MULTI-REGULARIZED FEATURES LEARNING

    Get PDF
    This paper investigates a new approach for face, gender and race classification, called multi-regularized learning (MRL). This approach combines ideas from the recently proposed algorithms called multi-stage learning (MSL) and multi-task features learning (MTFL). In our approach, we first reduce the dimensionality of the training faces using PCA. Next, for a given a test (probe) face, we use MRL to exploit the relationships among multiple shared stages generated by changing the regularization parameter. Our approach results in convex optimization problem that controls the trade-off between the fidelity to the data (training) and the smoothness of the solution (probe). Our MRL algorithm is compared against different state-of-the-art methods on face recognition (FR), gender classification (GC) and race classification (RC) based on different experimental protocols with AR, LFW, FEI, Lab2 and Indian databases. Results show that our algorithm performs very competitively

    Self-Paced Multi-Task Learning

    Full text link
    In this paper, we propose a novel multi-task learning (MTL) framework, called Self-Paced Multi-Task Learning (SPMTL). Different from previous works treating all tasks and instances equally when training, SPMTL attempts to jointly learn the tasks by taking into consideration the complexities of both tasks and instances. This is inspired by the cognitive process of human brain that often learns from the easy to the hard. We construct a compact SPMTL formulation by proposing a new task-oriented regularizer that can jointly prioritize the tasks and the instances. Thus it can be interpreted as a self-paced learner for MTL. A simple yet effective algorithm is designed for optimizing the proposed objective function. An error bound for a simplified formulation is also analyzed theoretically. Experimental results on toy and real-world datasets demonstrate the effectiveness of the proposed approach, compared to the state-of-the-art methods

    Proximal Iteratively Reweighted Algorithm with Multiple Splitting for Nonconvex Sparsity Optimization

    Full text link
    This paper proposes the Proximal Iteratively REweighted (PIRE) algorithm for solving a general problem, which involves a large body of nonconvex sparse and structured sparse related problems. Comparing with previous iterative solvers for nonconvex sparse problem, PIRE is much more general and efficient. The computational cost of PIRE in each iteration is usually as low as the state-of-the-art convex solvers. We further propose the PIRE algorithm with Parallel Splitting (PIRE-PS) and PIRE algorithm with Alternative Updating (PIRE-AU) to handle the multi-variable problems. In theory, we prove that our proposed methods converge and any limit solution is a stationary point. Extensive experiments on both synthesis and real data sets demonstrate that our methods achieve comparative learning performance, but are much more efficient, by comparing with previous nonconvex solvers

    Conic Multi-Task Classification

    Full text link
    Traditionally, Multi-task Learning (MTL) models optimize the average of task-related objective functions, which is an intuitive approach and which we will be referring to as Average MTL. However, a more general framework, referred to as Conic MTL, can be formulated by considering conic combinations of the objective functions instead; in this framework, Average MTL arises as a special case, when all combination coefficients equal 1. Although the advantage of Conic MTL over Average MTL has been shown experimentally in previous works, no theoretical justification has been provided to date. In this paper, we derive a generalization bound for the Conic MTL method, and demonstrate that the tightest bound is not necessarily achieved, when all combination coefficients equal 1; hence, Average MTL may not always be the optimal choice, and it is important to consider Conic MTL. As a byproduct of the generalization bound, it also theoretically explains the good experimental results of previous relevant works. Finally, we propose a new Conic MTL model, whose conic combination coefficients minimize the generalization bound, instead of choosing them heuristically as has been done in previous methods. The rationale and advantage of our model is demonstrated and verified via a series of experiments by comparing with several other methods.Comment: Accepted by European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD)-201
    corecore