20 research outputs found

    Survey on Deep Learning applied to predictive maintenance

    Get PDF
    Prognosis Health Monitoring (PHM) plays an increasingly important role in the management of machines and manufactured products in today’s industry, and deep learning plays an important part by establishing the optimal predictive maintenance policy. However, traditional learning methods such as unsupervised and supervised learning with standard architectures face numerous problems when exploiting existing data. Therefore, in this essay, we review the significant improvements in deep learning made by researchers over the last 3 years in solving these difficulties. We note that researchers are striving to achieve optimal performance in estimating the remaining useful life (RUL) of machine health by optimizing each step from data to predictive diagnostics. Specifically, we outline the challenges at each level with the type of improvement that has been made, and we feel that this is an opportunity to try to select a state-of-the-art architecture that incorporates these changes so each researcher can compare with his or her model. In addition, post-RUL reasoning and the use of distributed computing with cloud technology is presented, which will potentially improve the classification accuracy in maintenance activities. Deep learning will undoubtedly prove to have a major impact in upgrading companies at the lowest cost in the new industrial revolution, Industry 4.0

    Predicting Remaining Useful Life using Time Series Embeddings based on Recurrent Neural Networks

    Get PDF
    We consider the problem of estimating the remaining useful life (RUL) of a system or a machine from sensor data. Many approaches for RUL estimation based on sensor data make assumptions about how machines degrade. Additionally, sensor data from machines is noisy and often suffers from missing values in many practical settings. We propose Embed-RUL: a novel approach for RUL estimation from sensor data that does not rely on any degradation-trend assumptions, is robust to noise, and handles missing values. Embed-RUL utilizes a sequence-to-sequence model based on Recurrent Neural Networks (RNNs) to generate embeddings for multivariate time series subsequences. The embeddings for normal and degraded machines tend to be different, and are therefore found to be useful for RUL estimation. We show that the embeddings capture the overall pattern in the time series while filtering out the noise, so that the embeddings of two machines with similar operational behavior are close to each other, even when their sensor readings have significant and varying levels of noise content. We perform experiments on publicly available turbofan engine dataset and a proprietary real-world dataset, and demonstrate that Embed-RUL outperforms the previously reported state-of-the-art on several metrics.Comment: Presented at 2nd ML for PHM Workshop at SIGKDD 2017, Halifax, Canad
    corecore