36 research outputs found

    Sacrificing Accuracy for Reduced Computation: Cascaded Inference Based on Softmax Confidence

    Full text link
    We study the tradeoff between computational effort and accuracy in a cascade of deep neural networks. During inference, early termination in the cascade is controlled by confidence levels derived directly from the softmax outputs of intermediate classifiers. The advantage of early termination is that classification is performed using less computation, thus adjusting the computational effort to the complexity of the input. Moreover, dynamic modification of confidence thresholds allow one to trade accuracy for computational effort without requiring retraining. Basing of early termination on softmax classifier outputs is justified by experimentation that demonstrates an almost linear relation between confidence levels in intermediate classifiers and accuracy. Our experimentation with architectures based on ResNet obtained the following results. (i) A speedup of 1.5 that sacrifices 1.4% accuracy with respect to the CIFAR-10 test set. (ii) A speedup of 1.19 that sacrifices 0.7% accuracy with respect to the CIFAR-100 test set. (iii) A speedup of 2.16 that sacrifices 1.4% accuracy with respect to the SVHN test set

    Multigrid Backprojection Super-Resolution and Deep Filter Visualization

    Full text link
    We introduce a novel deep-learning architecture for image upscaling by large factors (e.g. 4x, 8x) based on examples of pristine high-resolution images. Our target is to reconstruct high-resolution images from their downscale versions. The proposed system performs a multi-level progressive upscaling, starting from small factors (2x) and updating for higher factors (4x and 8x). The system is recursive as it repeats the same procedure at each level. It is also residual since we use the network to update the outputs of a classic upscaler. The network residuals are improved by Iterative Back-Projections (IBP) computed in the features of a convolutional network. To work in multiple levels we extend the standard back-projection algorithm using a recursion analogous to Multi-Grid algorithms commonly used as solvers of large systems of linear equations. We finally show how the network can be interpreted as a standard upsampling-and-filter upscaler with a space-variant filter that adapts to the geometry. This approach allows us to visualize how the network learns to upscale. Finally, our system reaches state of the art quality for models with relatively few number of parameters.Comment: Spotlight paper in the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19

    Anytime Stereo Image Depth Estimation on Mobile Devices

    Full text link
    Many applications of stereo depth estimation in robotics require the generation of accurate disparity maps in real time under significant computational constraints. Current state-of-the-art algorithms force a choice between either generating accurate mappings at a slow pace, or quickly generating inaccurate ones, and additionally these methods typically require far too many parameters to be usable on power- or memory-constrained devices. Motivated by these shortcomings, we propose a novel approach for disparity prediction in the anytime setting. In contrast to prior work, our end-to-end learned approach can trade off computation and accuracy at inference time. Depth estimation is performed in stages, during which the model can be queried at any time to output its current best estimate. Our final model can process 1242× \times 375 resolution images within a range of 10-35 FPS on an NVIDIA Jetson TX2 module with only marginal increases in error -- using two orders of magnitude fewer parameters than the most competitive baseline. The source code is available at https://github.com/mileyan/AnyNet .Comment: Accepted by ICRA201

    Learning Fully Dense Neural Networks for Image Semantic Segmentation

    Full text link
    Semantic segmentation is pixel-wise classification which retains critical spatial information. The "feature map reuse" has been commonly adopted in CNN based approaches to take advantage of feature maps in the early layers for the later spatial reconstruction. Along this direction, we go a step further by proposing a fully dense neural network with an encoder-decoder structure that we abbreviate as FDNet. For each stage in the decoder module, feature maps of all the previous blocks are adaptively aggregated to feed-forward as input. On the one hand, it reconstructs the spatial boundaries accurately. On the other hand, it learns more efficiently with the more efficient gradient backpropagation. In addition, we propose the boundary-aware loss function to focus more attention on the pixels near the boundary, which boosts the "hard examples" labeling. We have demonstrated the best performance of the FDNet on the two benchmark datasets: PASCAL VOC 2012, NYUDv2 over previous works when not considering training on other datasets
    corecore