162,840 research outputs found

    Distributed control of multi-robot systems using bifurcating potential fields

    Get PDF
    The distributed control of multi-robot systems has been shown to have advantages over conventional single robot systems. These include scalability, flexibility and robustness to failures. This paper considers pattern formation and reconfigurability in a multi-robot system using bifurcating potential fields. It is shown how various patterns can be achieved through a simple free parameter change. In addition the stability of the system of robots is proven to ensure that desired behaviours always occur

    Safety Barrier Certificates for Heterogeneous Multi-Robot Systems

    Get PDF
    This paper presents a formal framework for collision avoidance in multi-robot systems, wherein an existing controller is modified in a minimally invasive fashion to ensure safety. We build this framework through the use of control barrier functions (CBFs) which guarantee forward invariance of a safe set; these yield safety barrier certificates in the context of heterogeneous robot dynamics subject to acceleration bounds. Moreover, safety barrier certificates are extended to a distributed control framework, wherein neighboring agent dynamics are unknown, through local parameter identification. The end result is an optimization-based controller that formally guarantees collision free behavior in heterogeneous multi-agent systems by minimally modifying the desired controller via safety barrier constraints. This formal result is verified in simulation on a multi-robot system consisting of both cumbersome and agile robots, is demonstrated experimentally on a system with a Magellan Pro robot and three Khepera III robots.Comment: 8 pages version of 2016ACC conference paper, experimental results adde

    Towards Optimally Decentralized Multi-Robot Collision Avoidance via Deep Reinforcement Learning

    Full text link
    Developing a safe and efficient collision avoidance policy for multiple robots is challenging in the decentralized scenarios where each robot generate its paths without observing other robots' states and intents. While other distributed multi-robot collision avoidance systems exist, they often require extracting agent-level features to plan a local collision-free action, which can be computationally prohibitive and not robust. More importantly, in practice the performance of these methods are much lower than their centralized counterparts. We present a decentralized sensor-level collision avoidance policy for multi-robot systems, which directly maps raw sensor measurements to an agent's steering commands in terms of movement velocity. As a first step toward reducing the performance gap between decentralized and centralized methods, we present a multi-scenario multi-stage training framework to find an optimal policy which is trained over a large number of robots on rich, complex environments simultaneously using a policy gradient based reinforcement learning algorithm. We validate the learned sensor-level collision avoidance policy in a variety of simulated scenarios with thorough performance evaluations and show that the final learned policy is able to find time efficient, collision-free paths for a large-scale robot system. We also demonstrate that the learned policy can be well generalized to new scenarios that do not appear in the entire training period, including navigating a heterogeneous group of robots and a large-scale scenario with 100 robots. Videos are available at https://sites.google.com/view/drlmac
    corecore