131 research outputs found

    5G-PPP Technology Board:Delivery of 5G Services Indoors - the wireless wire challenge and solutions

    Get PDF
    The 5G Public Private Partnership (5G PPP) has focused its research and innovation activities mainly on outdoor use cases and supporting the user and its applications while on the move. However, many use cases inherently apply in indoor environments whereas their requirements are not always properly reflected by the requirements eminent for outdoor applications. The best example for indoor applications can be found is the Industry 4.0 vertical, in which most described use cases are occurring in a manufacturing hall. Other environments exhibit similar characteristics such as commercial spaces in offices, shopping malls and commercial buildings. We can find further similar environments in the media & entertainment sector, culture sector with museums and the transportation sector with metro tunnels. Finally in the residential space we can observe a strong trend for wireless connectivity of appliances and devices in the home. Some of these spaces are exhibiting very high requirements among others in terms of device density, high-accuracy localisation, reliability, latency, time sensitivity, coverage and service continuity. The delivery of 5G services to these spaces has to consider the specificities of the indoor environments, in which the radio propagation characteristics are different and in the case of deep indoor scenarios, external radio signals cannot penetrate building construction materials. Furthermore, these spaces are usually “polluted” by existing wireless technologies, causing a multitude of interreference issues with 5G radio technologies. Nevertheless, there exist cases in which the co-existence of 5G new radio and other radio technologies may be sensible, such as for offloading local traffic. In any case the deployment of networks indoors is advised to consider and be planned along existing infrastructure, like powerlines and available shafts for other utilities. Finally indoor environments expose administrative cross-domain issues, and in some cases so called non-public networks, foreseen by 3GPP, could be an attractive deployment model for the owner/tenant of a private space and for the mobile network operators serving the area. Technology-wise there exist a number of solutions for indoor RAN deployment, ranging from small cell architectures, optical wireless/visual light communication, and THz communication utilising reconfigurable intelligent surfaces. For service delivery the concept of multi-access edge computing is well tailored to host virtual network functions needed in the indoor environment, including but not limited to functions supporting localisation, security, load balancing, video optimisation and multi-source streaming. Measurements of key performance indicators in indoor environments indicate that with proper planning and consideration of the environment characteristics, available solutions can deliver on the expectations. Measurements have been conducted regarding throughput and reliability in the mmWave and optical wireless communication cases, electric and magnetic field measurements, round trip latency measurements, as well as high-accuracy positioning in laboratory environment. Overall, the results so far are encouraging and indicate that 5G and beyond networks must advance further in order to meet the demands of future emerging intelligent automation systems in the next 10 years. Highly advanced industrial environments present challenges for 5G specifications, spanning congestion, interference, security and safety concerns, high power consumption, restricted propagation and poor location accuracy within the radio and core backbone communication networks for the massive IoT use cases, especially inside buildings. 6G and beyond 5G deployments for industrial networks will be increasingly denser, heterogeneous and dynamic, posing stricter performance requirements on the network. The large volume of data generated by future connected devices will put a strain on networks. It is therefore fundamental to discriminate the value of information to maximize the utility for the end users with limited network resources

    Intelligent Resource Allocation in 5G Multi-Radio Heterogeneous Networks

    Get PDF
    The fast-moving evolution of wireless networks, which started less than three decades ago, has resulted in worldwide connectivity and influenced the development of a global market in all related areas. However, in recent years, the growing user traffic demands have led to the saturation of licensed and unlicensed frequency bands regarding capacity and load-over-time. On the physical layer the used spectrum efficiency is already close to Shannon’s limit; however the traffic demand continues to grow, forcing mobile network operators and equipment manufacturers to evaluate more effective strategies of the wireless medium access.One of these strategies, called cell densification, implies there are a growing number of serving entities, with the appropriate reduction of the per-cell coverage area. However, if implemented blindly, this approach will lead to a significant growth in the average interference level and overhead control signaling, which are both required to allow sufficient user mobility. Furthermore, the interference is also affected by the increasing variety of radio access technologies (RATs) and applications, often deployed without the necessary level of cooperation with technologies that are already in place.To overcome these problems today’s telecommunication standardization groups are trying to collaborate. That is why the recent agenda of the fifth generation wireless networks (5G) includes not only the development schedules for the particular technologies but also implies there should be an expansion of the appropriate interconnection techniques. In this thesis, we describe and evaluate the concept of heterogeneous networks (HetNets), which involve the cooperation between several RATs.In the introductory part, we discuss the set of the problems, related to HetNets, and review the HetNet development process. Moreover, we show the evolution of existing and potential segments of the multi-RAT 5G network, together with the most promising applications, which could be used in future HetNets.Further, in the thesis, we describe the set of key representative scenarios, including three-tier WiFi-LTE multi-RAT deployment, MTC-enabled LTE, and the mmWave-based network. For each of these scenarios, we define a set of unsolved issues and appropriate solutions. For the WiFi-LTE multi-RAT scenario, we develop the framework, enabling intelligent and flexible resource allocation between the involved RATs. For MTC-enabled LTE, we study the effect of massive MTC deployments on the performance of LTE random access procedure and propose some basic methods to improve its efficiency. Finally, for the mmWave scenario, we study the effects of connectivity strategies, human body blockage and antenna array configuration on the overall network performance. Next, we develop a set of validated analytical and simulation-based techniques which allow us to evaluate the performance of proposed solutions. At the end of the introductory part a set of HetNet-related demo activities is demonstrated

    Angle-of-Arrival Estimation with Practical Phone Antenna Configurations

    Get PDF
    With the advances of the Internet of Things and mobile connectivity, location-based services are becoming increasingly popular and continue to enhance our experience. Multiple antennas have been pivotal in providing reliable wireless communications and high-resolution localization. If the antennas of the array are isotropic, then the simplified array manifold determined by the array geometry can be used to estimate the angle-of-arrival (AOA). However, in the real world, mobile handsets tend to have very limited space, where the practical antennas are equipped on the same ground plane, and the array geometry hardly obeys the rule of half-wavelength spacing. Therefore, a practical antenna couples signals from other antennas, causing a mutual coupling effect. Complex array manifolds are produced on an antenna even if the received signal is propagated through a single path channel. In addition, the irregular radiation pattern of each antenna further impairs the AOA estimation capability. Given the above effects, the simplified array manifold determined by the array geometry can no longer provide precise localization. In this paper, we propose a generic array manifold model for both isotropic and practical antennas. We also present an efficient algorithm to enable AOA estimation on practical antennas on the basis of the proposed model and implement it on a 5G phone at a mid-band spectrum with a 100MHz channel bandwidth. Results reveal the promising performance of the proposed model, with the AOA estimation errors lower than 10∘ in over 90% of the scenarios
    corecore