1,780 research outputs found

    Efficient UC Commitment Extension with Homomorphism for Free (and Applications)

    Get PDF
    Homomorphic universally composable (UC) commitments allow for the sender to reveal the result of additions and multiplications of values contained in commitments without revealing the values themselves while assuring the receiver of the correctness of such computation on committed values. In this work, we construct essentially optimal additively homomorphic UC commitments from any (not necessarily UC or homomorphic) extractable commitment. We obtain amortized linear computational complexity in the length of the input messages and rate 1. Next, we show how to extend our scheme to also obtain multiplicative homomorphism at the cost of asymptotic optimality but retaining low concrete complexity for practical parameters. While the previously best constructions use UC oblivious transfer as the main building block, our constructions only require extractable commitments and PRGs, achieving better concrete efficiency and offering new insights into the sufficient conditions for obtaining homomorphic UC commitments. Moreover, our techniques yield public coin protocols, which are compatible with the Fiat-Shamir heuristic. These results come at the cost of realizing a restricted version of the homomorphic commitment functionality where the sender is allowed to perform any number of commitments and operations on committed messages but is only allowed to perform a single batch opening of a number of commitments. Although this functionality seems restrictive, we show that it can be used as a building block for more efficient instantiations of recent protocols for secure multiparty computation and zero knowledge non-interactive arguments of knowledge

    Post hoc verification of quantum computation

    Full text link
    With recent progress on experimental quantum information processing, an important question has arisen as to whether it is possible to verify arbitrary computation performed on a quantum processor. A number of protocols have been proposed to achieve this goal, however all are interactive in nature, requiring that the computation be performed in an interactive manner with back and forth communication between the verifier and one or more provers. Here we propose two methods for verifying quantum computation in a non-interactive manner based on recent progress in the understanding of the local Hamiltonian problem. Provided that the provers compute certain witnesses for the computation, this allows the result of a quantum computation to be verified after the fact, a property not seen in current verification protocols.Comment: 4 pages, 2 figure

    Streaming Verification of Graph Computations via Graph Structure

    Get PDF
    We give new algorithms in the annotated data streaming setting - also known as verifiable data stream computation - for certain graph problems. This setting is meant to model outsourced computation, where a space-bounded verifier limited to sequential data access seeks to overcome its computational limitations by engaging a powerful prover, without needing to trust the prover. As is well established, several problems that admit no sublinear-space algorithms under traditional streaming do allow protocols using a sublinear amount of prover/verifier communication and sublinear-space verification. We give algorithms for many well-studied graph problems including triangle counting, its generalization to subgraph counting, maximum matching, problems about the existence (or not) of short paths, finding the shortest path between two vertices, and testing for an independent set. While some of these problems have been studied before, our results achieve new tradeoffs between space and communication costs that were hitherto unknown. In particular, two of our results disprove explicit conjectures of Thaler (ICALP, 2016) by giving triangle counting and maximum matching algorithms for n-vertex graphs, using o(n) space and o(n^2) communication

    Universal blind quantum computation

    Get PDF
    We present a protocol which allows a client to have a server carry out a quantum computation for her such that the client's inputs, outputs and computation remain perfectly private, and where she does not require any quantum computational power or memory. The client only needs to be able to prepare single qubits randomly chosen from a finite set and send them to the server, who has the balance of the required quantum computational resources. Our protocol is interactive: after the initial preparation of quantum states, the client and server use two-way classical communication which enables the client to drive the computation, giving single-qubit measurement instructions to the server, depending on previous measurement outcomes. Our protocol works for inputs and outputs that are either classical or quantum. We give an authentication protocol that allows the client to detect an interfering server; our scheme can also be made fault-tolerant. We also generalize our result to the setting of a purely classical client who communicates classically with two non-communicating entangled servers, in order to perform a blind quantum computation. By incorporating the authentication protocol, we show that any problem in BQP has an entangled two-prover interactive proof with a purely classical verifier. Our protocol is the first universal scheme which detects a cheating server, as well as the first protocol which does not require any quantum computation whatsoever on the client's side. The novelty of our approach is in using the unique features of measurement-based quantum computing which allows us to clearly distinguish between the quantum and classical aspects of a quantum computation.Comment: 20 pages, 7 figures. This version contains detailed proofs of authentication and fault tolerance. It also contains protocols for quantum inputs and outputs and appendices not available in the published versio

    Quantum Proofs

    Get PDF
    Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class \class{NP}, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class \class{QSZK}, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.Comment: Survey published by NOW publisher

    Hash First, Argue Later: Adaptive Verifiable Computations on Outsourced Data

    Get PDF
    Proof systems for verifiable computation (VC) have the potential to make cloud outsourcing more trustworthy. Recent schemes enable a verifier with limited resources to delegate large computations and verify their outcome based on succinct arguments: verification complexity is linear in the size of the inputs and outputs (not the size of the computation). However, cloud computing also often involves large amounts of data, which may exceed the local storage and I/O capabilities of the verifier, and thus limit the use of VC. In this paper, we investigate multi-relation hash & prove schemes for verifiable computations that operate on succinct data hashes. Hence, the verifier delegates both storage and computation to an untrusted worker. She uploads data and keeps hashes; exchanges hashes with other parties; verifies arguments that consume and produce hashes; and selectively downloads the actual data she needs to access. Existing instantiations that fit our definition either target restricted classes of computations or employ relatively inefficient techniques. Instead, we propose efficient constructions that lift classes of existing arguments schemes for fixed relations to multi-relation hash & prove schemes. Our schemes (1) rely on hash algorithms that run linearly in the size of the input; (2) enable constant-time verification of arguments on hashed inputs; (3) incur minimal overhead for the prover. Their main benefit is to amortize the linear cost for the verifier across all relations with shared I/O. Concretely, compared to solutions that can be obtained from prior work, our new hash & prove constructions yield a 1,400x speed-up for provers. We also explain how to further reduce the linear verification costs by partially outsourcing the hash computation itself, obtaining a 480x speed-up when applied to existing VC schemes, even on single-relation executions

    Perfect zero knowledge for quantum multiprover interactive proofs

    Full text link
    In this work we consider the interplay between multiprover interactive proofs, quantum entanglement, and zero knowledge proofs - notions that are central pillars of complexity theory, quantum information and cryptography. In particular, we study the relationship between the complexity class MIP∗^*, the set of languages decidable by multiprover interactive proofs with quantumly entangled provers, and the class PZKMIP∗^*, which is the set of languages decidable by MIP∗^* protocols that furthermore possess the perfect zero knowledge property. Our main result is that the two classes are equal, i.e., MIP∗=^* = PZKMIP∗^*. This result provides a quantum analogue of the celebrated result of Ben-Or, Goldwasser, Kilian, and Wigderson (STOC 1988) who show that MIP == PZKMIP (in other words, all classical multiprover interactive protocols can be made zero knowledge). We prove our result by showing that every MIP∗^* protocol can be efficiently transformed into an equivalent zero knowledge MIP∗^* protocol in a manner that preserves the completeness-soundness gap. Combining our transformation with previous results by Slofstra (Forum of Mathematics, Pi 2019) and Fitzsimons, Ji, Vidick and Yuen (STOC 2019), we obtain the corollary that all co-recursively enumerable languages (which include undecidable problems as well as all decidable problems) have zero knowledge MIP∗^* protocols with vanishing promise gap

    Trade-Offs in Distributed Interactive Proofs

    Get PDF
    The study of interactive proofs in the context of distributed network computing is a novel topic, recently introduced by Kol, Oshman, and Saxena [PODC 2018]. In the spirit of sequential interactive proofs theory, we study the power of distributed interactive proofs. This is achieved via a series of results establishing trade-offs between various parameters impacting the power of interactive proofs, including the number of interactions, the certificate size, the communication complexity, and the form of randomness used. Our results also connect distributed interactive proofs with the established field of distributed verification. In general, our results contribute to providing structure to the landscape of distributed interactive proofs
    • …
    corecore