19,280 research outputs found

    Deep Binary Reconstruction for Cross-modal Hashing

    Full text link
    With the increasing demand of massive multimodal data storage and organization, cross-modal retrieval based on hashing technique has drawn much attention nowadays. It takes the binary codes of one modality as the query to retrieve the relevant hashing codes of another modality. However, the existing binary constraint makes it difficult to find the optimal cross-modal hashing function. Most approaches choose to relax the constraint and perform thresholding strategy on the real-value representation instead of directly solving the original objective. In this paper, we first provide a concrete analysis about the effectiveness of multimodal networks in preserving the inter- and intra-modal consistency. Based on the analysis, we provide a so-called Deep Binary Reconstruction (DBRC) network that can directly learn the binary hashing codes in an unsupervised fashion. The superiority comes from a proposed simple but efficient activation function, named as Adaptive Tanh (ATanh). The ATanh function can adaptively learn the binary codes and be trained via back-propagation. Extensive experiments on three benchmark datasets demonstrate that DBRC outperforms several state-of-the-art methods in both image2text and text2image retrieval task.Comment: 8 pages, 5 figures, accepted by ACM Multimedia 201

    Deep Cross-Modal Correlation Learning for Audio and Lyrics in Music Retrieval

    Get PDF
    Deep cross-modal learning has successfully demonstrated excellent performance in cross-modal multimedia retrieval, with the aim of learning joint representations between different data modalities. Unfortunately, little research focuses on cross-modal correlation learning where temporal structures of different data modalities such as audio and lyrics should be taken into account. Stemming from the characteristic of temporal structures of music in nature, we are motivated to learn the deep sequential correlation between audio and lyrics. In this work, we propose a deep cross-modal correlation learning architecture involving two-branch deep neural networks for audio modality and text modality (lyrics). Data in different modalities are converted to the same canonical space where inter modal canonical correlation analysis is utilized as an objective function to calculate the similarity of temporal structures. This is the first study that uses deep architectures for learning the temporal correlation between audio and lyrics. A pre-trained Doc2Vec model followed by fully-connected layers is used to represent lyrics. Two significant contributions are made in the audio branch, as follows: i) We propose an end-to-end network to learn cross-modal correlation between audio and lyrics, where feature extraction and correlation learning are simultaneously performed and joint representation is learned by considering temporal structures. ii) As for feature extraction, we further represent an audio signal by a short sequence of local summaries (VGG16 features) and apply a recurrent neural network to compute a compact feature that better learns temporal structures of music audio. Experimental results, using audio to retrieve lyrics or using lyrics to retrieve audio, verify the effectiveness of the proposed deep correlation learning architectures in cross-modal music retrieval
    • …
    corecore