11 research outputs found

    PipeNet: Selective Modal Pipeline of Fusion Network for Multi-Modal Face Anti-Spoofing

    Full text link
    Face anti-spoofing has become an increasingly important and critical security feature for authentication systems, due to rampant and easily launchable presentation attacks. Addressing the shortage of multi-modal face dataset, CASIA recently released the largest up-to-date CASIA-SURF Cross-ethnicity Face Anti-spoofing(CeFA) dataset, covering 3 ethnicities, 3 modalities, 1607 subjects, and 2D plus 3D attack types in four protocols, and focusing on the challenge of improving the generalization capability of face anti-spoofing in cross-ethnicity and multi-modal continuous data. In this paper, we propose a novel pipeline-based multi-stream CNN architecture called PipeNet for multi-modal face anti-spoofing. Unlike previous works, Selective Modal Pipeline (SMP) is designed to enable a customized pipeline for each data modality to take full advantage of multi-modal data. Limited Frame Vote (LFV) is designed to ensure stable and accurate prediction for video classification. The proposed method wins the third place in the final ranking of Chalearn Multi-modal Cross-ethnicity Face Anti-spoofing Recognition Challenge@CVPR2020. Our final submission achieves the Average Classification Error Rate (ACER) of 2.21 with Standard Deviation of 1.26 on the test set.Comment: Accepted to appear in CVPR2020 WM

    Face Anti-Spoofing by Learning Polarization Cues in a Real-World Scenario

    Full text link
    Face anti-spoofing is the key to preventing security breaches in biometric recognition applications. Existing software-based and hardware-based face liveness detection methods are effective in constrained environments or designated datasets only. Deep learning method using RGB and infrared images demands a large amount of training data for new attacks. In this paper, we present a face anti-spoofing method in a real-world scenario by automatic learning the physical characteristics in polarization images of a real face compared to a deceptive attack. A computational framework is developed to extract and classify the unique face features using convolutional neural networks and SVM together. Our real-time polarized face anti-spoofing (PAAS) detection method uses a on-chip integrated polarization imaging sensor with optimized processing algorithms. Extensive experiments demonstrate the advantages of the PAAS technique to counter diverse face spoofing attacks (print, replay, mask) in uncontrolled indoor and outdoor conditions by learning polarized face images of 33 people. A four-directional polarized face image dataset is released to inspire future applications within biometric anti-spoofing field.Comment: 14pages,8figure

    Unified Physical-Digital Face Attack Detection

    Full text link
    Face Recognition (FR) systems can suffer from physical (i.e., print photo) and digital (i.e., DeepFake) attacks. However, previous related work rarely considers both situations at the same time. This implies the deployment of multiple models and thus more computational burden. The main reasons for this lack of an integrated model are caused by two factors: (1) The lack of a dataset including both physical and digital attacks with ID consistency which means the same ID covers the real face and all attack types; (2) Given the large intra-class variance between these two attacks, it is difficult to learn a compact feature space to detect both attacks simultaneously. To address these issues, we collect a Unified physical-digital Attack dataset, called UniAttackData. The dataset consists of 1,8001,800 participations of 2 and 12 physical and digital attacks, respectively, resulting in a total of 29,706 videos. Then, we propose a Unified Attack Detection framework based on Vision-Language Models (VLMs), namely UniAttackDetection, which includes three main modules: the Teacher-Student Prompts (TSP) module, focused on acquiring unified and specific knowledge respectively; the Unified Knowledge Mining (UKM) module, designed to capture a comprehensive feature space; and the Sample-Level Prompt Interaction (SLPI) module, aimed at grasping sample-level semantics. These three modules seamlessly form a robust unified attack detection framework. Extensive experiments on UniAttackData and three other datasets demonstrate the superiority of our approach for unified face attack detection.Comment: 12 pages, 8 figure

    Academic competitions

    Full text link
    Academic challenges comprise effective means for (i) advancing the state of the art, (ii) putting in the spotlight of a scientific community specific topics and problems, as well as (iii) closing the gap for under represented communities in terms of accessing and participating in the shaping of research fields. Competitions can be traced back for centuries and their achievements have had great influence in our modern world. Recently, they (re)gained popularity, with the overwhelming amounts of data that is being generated in different domains, as well as the need of pushing the barriers of existing methods, and available tools to handle such data. This chapter provides a survey of academic challenges in the context of machine learning and related fields. We review the most influential competitions in the last few years and analyze challenges per area of knowledge. The aims of scientific challenges, their goals, major achievements and expectations for the next few years are reviewed

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area
    corecore