835 research outputs found

    Multi-level CFD-based Airfoil Shape Optimization With Automated Low-fidelity Model Selection

    Get PDF
    AbstractComputational fluid dynamic (CFD) models are ubiquitous in aerodynamic design. Variable-fidelity optimization algorithms have proven to be computationally efficient and therefore suitable to reduce high CPU-cost related to the design process solely based on accurate CFD models. A convenient way of constructing the variable-fidelity models is by using the high-fidelity solver, but with a varying degree of discretization and reduced number of flow solver iterations. So far, selection of the appropriate parameters has only been guided by the designer experience. In this paper, an automated low- fidelity model selection technique is presented. By defining the problem as a constrained nonlinear optimization problem, suitable grid and flow solver parameters are obtained. Our approach is compared to conventional methods of generating a family of variable-fidelity models. Comparison of the standard and the proposed approaches in the context of aerodynamic design of a transonic airfoil indicates that the automated model generation can yield significant computational savings

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Model based collaborative design & optimization of blended wing body aircraft configuration: AGILE EU project

    Get PDF
    Novel configuration design choices may help achieve revolutionary goals for reducing fuel burn, emission and noise, set by Flightpath 2050. One such advance configuration is a blended wing body. Due to multi-diciplinary nature of the configuration, several partners with disciplinary expertise collaborate in a Model driven ‘AGILE MDAO framework’ to design and evaluate the novel configuration. The objective of this research are : - To create and test a model based collaborative framework using AGILE Paradigm for novel configuration design & optimization, involving large multinational team. Reduce setup time for complex MDO problem. - Through Multi fidelity design space exploration, evaluate aerodynamic performance - The BWB disciplinary analysis models such as aerodynamics, propulsion, onboard systems, S&C were integrated and intermediate results are published in this report

    A multi-fidelity framework for physics based rotor blade simulation and optimization

    Get PDF
    New helicopter rotor designs are desired that offer increased efficiency, reduced vibration, and reduced noise. This problem is multidisciplinary, requiring knowledge of structural dynamics, aerodynamics, and aeroacoustics. Rotor optimization requires achieving multiple, often conflicting objectives. There is no longer a single optimum but rather an optimal trade-off space, the Pareto Frontier. Rotor Designers in industry need methods that allow the most accurate simulation tools available to search for Pareto designs. Computer simulation and optimization of rotors have been advanced by the development of "comprehensive" rotorcraft analysis tools. These tools perform aeroelastic analysis using Computational Structural Dynamics (CSD). Though useful in optimization, these tools lack built-in high fidelity aerodynamic models. The most accurate rotor simulations utilize Computational Fluid Dynamics (CFD) coupled to the CSD of a comprehensive code, but are generally considered too time consuming where numerous simulations are required like rotor optimization. An approach is needed where high fidelity CFD/CSD simulation can be routinely used in design optimization. This thesis documents the development of physics based rotor simulation frameworks. A low fidelity model uses a comprehensive code with simplified aerodynamics. A high fidelity model uses a parallel processor capable CFD/CSD methodology. Both frameworks include an aeroacoustic simulation for prediction of noise. A synergistic process is developed that uses both frameworks together to build approximate models of important high fidelity metrics as functions of certain design variables. To test this process, a 4-bladed hingeless rotor model is used as a baseline. The design variables investigated include tip geometry and spanwise twist. Approximation models are built for high fidelity metrics related to rotor efficiency and vibration. Optimization using the approximation models found the designs having maximum rotor efficiency and minimum vibration. Various Pareto generation methods are used to find frontier designs between these two anchor designs. The Pareto anchors are tested in the high fidelity simulation and shown to be good designs, providing evidence that the process has merit. Ultimately, this process can be utilized by industry rotor designers with their existing tools to bring high fidelity analysis into the preliminary design stage of rotors.Ph.D.Committee Co-Chair: Dr. Dimitri Mavris; Committee Co-Chair: Dr. Lakshmi N. Sankar; Committee Member: Dr. Daniel P. Schrage; Committee Member: Dr. Kenneth S. Brentner; Committee Member: Dr. Mark Costell

    Optimal Energy-Driven Aircraft Design Under Uncertainty

    Get PDF
    Aerodynamic shape design robust optimization is gaining popularity in the aeronautical industry as it provides optimal solutions that do not deteriorate excessively in the presence of uncertainties. Several approaches exist to quantify uncertainty and, the dissertation deals with the use of risk measures, particularly the Value at Risk (VaR) and the Conditional Value at Risk (CVaR). The calculation of these measures relies on the Empirical Cumulative Distribution Function (ECDF) construction. Estimating the ECDF with a Monte Carlo sampling can require many samples, especially if good accuracy is needed on the probability distribution tails. Furthermore, suppose the quantity of interest (QoI) requires a significant computational effort, as in this dissertation, where has to resort to Computational Fluid Dynamics (CFD) methods. In that case, it becomes imperative to introduce techniques that reduce the number of samples needed or speed up the QoI evaluations while maintaining the same accuracy. Therefore, this dissertation focuses on investigating methods for reducing the computational cost required to perform optimization under uncertainty. Here, two cooperating approaches are introduced: speeding up the CFD evaluations and approximating the statistical measures. Specifically, the CFD evaluation is sped up by employing a far-field approach, capable of providing better estimations of aerodynamic forces on coarse grids with respect to a classical near-field approach. The advantages and critical points of the implementation of this method are explored in viscous and inviscid test cases. On the other hand, the approximation of the statistical measure is performed by using the gradient-based method or a surrogate-based approach. Notably, the gradient-based method uses adjoint field solutions to reduce the time required to evaluate them through CFD drastically. Both methods are used to solve the shape optimization of the central section of a Blended Wing Body under uncertainty. Moreover, a multi-fidelity surrogate-based optimization is used for the robust design of a propeller blade. Finally, additional research work documented in this dissertation focuses on utilizing an optimization algorithm that mixes integer and continuous variables for the robust optimization of High Lift Devices

    Uncertainty-Integrated Surrogate Modeling for Complex System Optimization

    Get PDF
    Approximation models such as surrogate models provide a tractable substitute to expensive physical simulations and an effective solution to the potential lack of quantitative models of system behavior. These capabilities not only enable the efficient design of complex systems, but is also essential for the effective analysis of physical phenomena/characteristics in the different domains of Engineering, Material Science, Biomedical Science, and various other disciplines. Since these models provide an abstraction of the real system behavior (often a low-fidelity representative) it is important to quantify the accuracy and the reliability of such approximation models without investing additional expensive system evaluations (simulations or physical experiments). Standard error measures, such as the mean squared error, the cross-validation error, and the Akaike\u27s information criterion however provide limited (often inadequate) information regarding the accuracy of the final surrogate model while other more effective dedicated error measures are tailored towards only one class of surrogate models. This lack of accuracy information and the ability to compare and test diverse surrogate models reduce the confidence in model application, restricts appropriate model selection, and undermines the effectiveness of surrogate-based optimization. A key contribution of this dissertation is the development of a new model-independent approach to quantify the fidelity of a trained surrogate model in a given region of the design domain. This method is called the Predictive Estimation of Model Fidelity (PEMF). The PEMF method is derived from the hypothesis that the accuracy of an approximation model is related to the amount of data resources leveraged to train the model . In PEMF, intermediate surrogate models are iteratively constructed over heuristic subsets of sample points. The median and the maximum errors estimated over the remaining points are used to determine the respective error distributions at each iteration. The estimated modes of the error distributions are represented as functions of the density of intermediate training points through nonlinear regression, assuming a smooth decreasing trend of errors with increasing sample density. These regression functions are then used to predict the expected median and maximum errors in the final surrogate models. It is observed that the model fidelities estimated by PEMF are up to two orders of magnitude more accurate and statistically more stable compared to those based on the popularly-used leave-one-out cross-validation method, when applied to a variety of benchmark problems. By leveraging this new paradigm in quantifying the fidelity of surrogate models, a novel automated surrogate model selection framework is also developed. This PEMF-based model selection framework is called the Concurrent Surrogate Model Selection (COSMOS). COSMOS, unlike existing model selection methods, coherently operates at all the three levels necessary to facilitate optimal selection, i.e., (1) selecting the model type, (2) selecting the kernel function type, and (3) determining the optimal values of the typically user-prescribed parameters. The selection criteria that guide optimal model selection are determined by PEMF and the search process is performed using a MINLP solver. The effectiveness of COSMOS is demonstrated by successfully applying it to different benchmark and practical engineering problems, where it offers a first-of-its-kind globally competitive model selection. In this dissertation, the knowledge about the accuracy of a surrogate estimated using PEMF is applied to also develop a novel model management approach for engineering optimization. This approach adaptively selects computational models (both physics-based models and surrogate models) of differing levels of fidelity and computational cost, to be used during optimization, with the overall objective to yield optimal designs with high-fidelity function estimates at a reasonable computational expense. In this technique, a new adaptive model switching (AMS) metric defined to guide the switching of model from one to the next higher fidelity model during the optimization process. The switching criterion is based on whether the uncertainty associated with the current model output dominates the latest improvement of the relative fitness function, where both the model output uncertainty and the function improvement (across the population) are expressed as probability distributions. This adaptive model switching technique is applied to two practical problems through Particle Swarm Optimization to successfully illustrate: (i) the computational advantage of this method over purely high-fidelity model-based optimization, and (ii) the accuracy advantage of this method over purely low-fidelity model-based optimization. Motivated by the unique capabilities of the model switching concept, a new model refinement approach is also developed in this dissertation. The model refinement approach can be perceived as an adaptive sequential sampling approach applied in surrogate-based optimization. Decisions regarding when to perform additional system evaluations to refine the model is guided by the same model-uncertainty principles as in the adaptive model switching technique. The effectiveness of this new model refinement technique is illustrated through application to practical surrogate-based optimization in the area of energy sustainability

    RANS-based Aerodynamic Shape Optimization Investigations of the Common Research Model Wing

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140409/1/6.2014-0567.pd
    • …
    corecore