2,321 research outputs found

    Service oriented networking for multimedia applications in broadband wireless networks

    Get PDF
    Extensive efforts have been focused on deploying broadband wireless networks. Providing mobile users with high speed network connectivity will let them run various multimedia applications on their wireless devices. In order to successfully deploy and operate broadband wireless networks, it is crucial to design efficient methods for supporting various services and applications in broadband wireless networks. Moreover, the existing access-oriented networking solutions are not able to fully address all the issues of supporting various applications with different quality of service requirements. Thus, service-oriented networking has been recently proposed and has gained much attention. This dissertation discusses the challenges and possible solutions for supporting multimedia applications in broadband wireless networks. The service requirements of different multimedia applications such as video streaming and Voice over IP (VoIP) are studied and some novel service-oriented networking solutions for supporting these applications in broadband wireless networks are proposed. The performance of these solutions is examined in WiMAX networks which are the promising technology for broadband wireless access in the near future. WiMAX networks are based on the IEEE 802.16 standards which have defined different Quality of Service (QoS) classes to support a broad range of applications with varying service requirements to mobile and stationary users. The growth of multimedia traffic that requires special quality of service from the network will impose new constraints on network designers who should wisely allocate the limited resources to users based on their required quality of service. An efficient resource management and network design depends upon gaining accurate information about the traffic profile of user applications. In this dissertation, the access level traffic profile of VoIP applications are studied first, and then a realistic distribution model for VoIP traffic is proposed. Based on this model, an algorithm to allocate resources for VoIP applications in WiMAX networks is investigated. Later, the challenges and possible solutions for transmitting MPEG video streams in wireless networks are discussed. The MPEG traffic model adopted by the WiMAX Forum is introduced and different application-oriented solutions for enhancing the performance of wireless networks with respect to MPEG video streaming applications are explained. An analytical framework to verify the performance of the proposed solutions is discoursed, and it is shown that the proposed solutions will improve the efficiency of VoIP applications and the quality of streaming applications over wireless networks. Finally, conclusions are drawn and future works are discussed

    Scalable Video Coding of H.264/AVC Video Streaming with QoS-based Active Dropping in 802.16e networks

    Get PDF
    [[abstract]]Multimedia applications over mobile wireless network are becoming popular in recent years. High video quality depends on the wide bandwidth but the wide bandwidth restricts the number of users in the network system. Effective bandwidth utilization is the major problem in wireless network because the bandwidth resource in wireless environment is limited and precious. For this reason, we propose an active dropping mechanism to deal with the effective bandwidth utilization problem. In the proposed mechanism, if the network loading exceeds the threshold, the dropping mechanism starts to drop the enhancement layer data for low level user and the dropping probability is varying with the different network loading. For the multimedia application, we use the characteristic of the scalable video coding (SVC) extension of H.264/AVC standard to provide different video quality for different level user. By the dropping mechanism, base station increases the system capability and users can obtain better quality of service when the system is under heavy loading. In this paper, we study the network platform of the 802.16e standard and add the QoS-based active dropping mechanism to the MAC layer. In the simulation results, the system capability that releases bandwidth by dropping mechanism and service quality of users are observed.[[conferencetype]]國際[[conferencedate]]20080325~20080328[[booktype]]紙本[[conferencelocation]]Okinawa, Japa

    Improving perceptual multimedia quality with an adaptable communication protocol

    Get PDF
    Copyrights @ 2005 University Computing Centre ZagrebInnovations and developments in networking technology have been driven by technical considerations with little analysis of the benefit to the user. In this paper we argue that network parameters that define the network Quality of Service (QoS) must be driven by user-centric parameters such as user expectations and requirements for multimedia transmitted over a network. To this end a mechanism for mapping user-oriented parameters to network QoS parameters is outlined. The paper surveys existing methods for mapping user requirements to the network. An adaptable communication system is implemented to validate the mapping. The architecture adapts to varying network conditions caused by congestion so as to maintain user expectations and requirements. The paper also surveys research in the area of adaptable communications architectures and protocols. Our results show that such a user-biased approach to networking does bring tangible benefits to the user

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    A Survey on Adaptive Multimedia Streaming

    Get PDF
    Internet was primarily designed for one to one applications like electronic mail, reliable file transfer etc. However, the technological growth in both hardware and software industry have written in unprecedented success story of the growth of Internet and have paved the paths of modern digital evolution. In today’s world, the internet has become the way of life and has penetrated in its every domain. It is nearly impossible to list the applications which make use of internet in this era however, all these applications are data intensive and data may be textual, audio or visual requiring improved techniques to deal with these. Multimedia applications are one of them and have witnessed unprecedented growth in last few years. A predominance of that is by virtue of different video streaming applications in daily life like games, education, entertainment, security etc. Due to the huge demand of multimedia applications, heterogeneity of demands and limited resource availability there is a dire need of adaptive multimedia streaming. This chapter provides the detail discussion over different adaptive multimedia streaming mechanism over peer to peer network

    Network-supported layered multicast transport control for streaming media

    Get PDF
    Multicast is very efficient in distributing large volume of data to multiple receivers over the Internet. Layered multicast helps solve the heterogeneity problem in multicast delivery. Extensive work has been done in the area of layered multicast, for both congestion control and error control. In this paper, we focus on network-supported protocols for streaming media. Most of the existing work solves the congestion control and error control problems separately, and do not give an integrated, efficient solution. In this paper, after reviewing related work, we introduce our proposed protocols, RALM and RALF. The former is a congestion control protocol and the latter is an error control protocol. They work under the same framework and provide an integrated solution. We also extend RALM to RALM-II, which is compatible with TCP traffic. We analyze the complexity of the proposed protocols in the network and investigated their performance through simulations. We show that our solution achieves significant performance gains with reasonable additional complexity. © 2007 IEEE.published_or_final_versio
    • …
    corecore