12 research outputs found

    Probabilistic Latent Factor Model for Collaborative Filtering with Bayesian Inference

    Full text link
    Latent Factor Model (LFM) is one of the most successful methods for Collaborative filtering (CF) in the recommendation system, in which both users and items are projected into a joint latent factor space. Base on matrix factorization applied usually in pattern recognition, LFM models user-item interactions as inner products of factor vectors of user and item in that space and can be efficiently solved by least square methods with optimal estimation. However, such optimal estimation methods are prone to overfitting due to the extreme sparsity of user-item interactions. In this paper, we propose a Bayesian treatment for LFM, named Bayesian Latent Factor Model (BLFM). Based on observed user-item interactions, we build a probabilistic factor model in which the regularization is introduced via placing prior constraint on latent factors, and the likelihood function is established over observations and parameters. Then we draw samples of latent factors from the posterior distribution with Variational Inference (VI) to predict expected value. We further make an extension to BLFM, called BLFMBias, incorporating user-dependent and item-dependent biases into the model for enhancing performance. Extensive experiments on the movie rating dataset show the effectiveness of our proposed models by compared with several strong baselines.Comment: 8 pages, 5 figures, ICPR2020 conferenc

    Knowledge-Enhanced Top-K Recommendation in Poincar\'e Ball

    Full text link
    Personalized recommender systems are increasingly important as more content and services become available and users struggle to identify what might interest them. Thanks to the ability for providing rich information, knowledge graphs (KGs) are being incorporated to enhance the recommendation performance and interpretability. To effectively make use of the knowledge graph, we propose a recommendation model in the hyperbolic space, which facilitates the learning of the hierarchical structure of knowledge graphs. Furthermore, a hyperbolic attention network is employed to determine the relative importances of neighboring entities of a certain item. In addition, we propose an adaptive and fine-grained regularization mechanism to adaptively regularize items and their neighboring representations. Via a comparison using three real-world datasets with state-of-the-art methods, we show that the proposed model outperforms the best existing models by 2-16% in terms of NDCG@K on Top-K recommendation.Comment: Accepted by the 35th AAAI Conference on Artificial Intelligence (AAAI 2021

    GraphSAIL: Graph Structure Aware Incremental Learning for Recommender Systems

    Full text link
    Given the convenience of collecting information through online services, recommender systems now consume large scale data and play a more important role in improving user experience. With the recent emergence of Graph Neural Networks (GNNs), GNN-based recommender models have shown the advantage of modeling the recommender system as a user-item bipartite graph to learn representations of users and items. However, such models are expensive to train and difficult to perform frequent updates to provide the most up-to-date recommendations. In this work, we propose to update GNN-based recommender models incrementally so that the computation time can be greatly reduced and models can be updated more frequently. We develop a Graph Structure Aware Incremental Learning framework, GraphSAIL, to address the commonly experienced catastrophic forgetting problem that occurs when training a model in an incremental fashion. Our approach preserves a user's long-term preference (or an item's long-term property) during incremental model updating. GraphSAIL implements a graph structure preservation strategy which explicitly preserves each node's local structure, global structure, and self-information, respectively. We argue that our incremental training framework is the first attempt tailored for GNN based recommender systems and demonstrate its improvement compared to other incremental learning techniques on two public datasets. We further verify the effectiveness of our framework on a large-scale industrial dataset.Comment: Accepted by CIKM2020 Applied Research Trac

    GAG: Global Attributed Graph Neural Network for Streaming Session-based Recommendation

    Full text link
    Streaming session-based recommendation (SSR) is a challenging task that requires the recommender system to do the session-based recommendation (SR) in the streaming scenario. In the real-world applications of e-commerce and social media, a sequence of user-item interactions generated within a certain period are grouped as a session, and these sessions consecutively arrive in the form of streams. Most of the recent SR research has focused on the static setting where the training data is first acquired and then used to train a session-based recommender model. They need several epochs of training over the whole dataset, which is infeasible in the streaming setting. Besides, they can hardly well capture long-term user interests because of the neglect or the simple usage of the user information. Although some streaming recommendation strategies have been proposed recently, they are designed for streams of individual interactions rather than streams of sessions. In this paper, we propose a Global Attributed Graph (GAG) neural network model with a Wasserstein reservoir for the SSR problem. On one hand, when a new session arrives, a session graph with a global attribute is constructed based on the current session and its associate user. Thus, the GAG can take both the global attribute and the current session into consideration to learn more comprehensive representations of the session and the user, yielding a better performance in the recommendation. On the other hand, for the adaptation to the streaming session scenario, a Wasserstein reservoir is proposed to help preserve a representative sketch of the historical data. Extensive experiments on two real-world datasets have been conducted to verify the superiority of the GAG model compared with the state-of-the-art methods
    corecore