24 research outputs found

    Real-time monitoring of tissue property in a liver phantom using an internal electrode and weighted frequency difference conductivity during microwave ablation

    Get PDF
    We measured the time difference and weighted frequency difference conductivity images to monitor the changes of temperature and tissue property in a liver phantom due to the microwave ablation. Pixels in regions of interest were compared between conventional boundary surface electrode method and focused configuration with an internal electrode

    A 122 fps, 1 MHz bandwidth multi-frequency wearable EIT belt featuring novel active electrode architecture for neonatal thorax vital sign monitoring

    Get PDF
    A highly integrated, wearable electrical impedance tomography (EIT) belt for neonatal thorax vital multiple sign monitoring is presented. The belt has sixteen active electrodes. Each has an application specific integrated circuit (ASIC) connected to an electrode. The ASIC contains a fully differential current driver, a high-performance instrumentation amplifier (IA), a digital controller and multiplexors. The wearable EIT belt features a new active electrode architecture that allows programmable flexible electrode current drive and voltage sense patterns under simple digital control. It provides intimate connections to the electrodes for the current drive and to the IA for direct differential voltage measurement providing superior common-mode rejection ratio. The ASIC was designed in a CMOS 0.35-μm high-voltage technology. The high specification EIT belt has an image frame rate of 122 fps, a wide operating bandwidth of 1 MHz and multi-frequency operation. It measures impedance with 98% accuracy and has less than 0.5 Ω and 1o variation across all possible channels. The image results confirmed the advantage of the new active electrode architecture and the benefit of wideband, multi-frequency EIT operation. The wearable EIT belt can also detect patient position and torso shape information using a MEMS sensor interfaced to each ASIC. The system successfully captured high quality lung respiration EIT images, breathing cycle and heart rate

    A high frame rate wearable EIT system using active electrode ASICs for lung respiration and heart rate monitoring

    Get PDF
    A high specification, wearable, electrical impedance tomography (EIT) system with 32 active electrodes is presented. Each electrode has an application specific integrated circuit (ASIC) mounted on a flexible printed circuit board, which is then wrapped inside a disposable fabric cover containing silver-coated electrodes to form the wearable belt. It is connected to a central hub that operates all the 32 ASICs. Each ASIC comprises a high- performance current driver capable of up to 6 mAp−p output, a voltage buffer for EIT and heart rate signal recording as well as contact impedance monitoring, and a sensor buffer that provides multi-parameter sensing. The ASIC was designed in a CMOS 0.35-μm high-voltage process technology. It operates from ±9-V power supplies and occupies a total die area of 3.9 mm2. The EIT system has a bandwidth of 500 kHz and employs two parallel data acquisition channels to achieve a frame rate of 107 frames/s, the fastest wearable EIT system reported to date. Measured results show that the system has a measurement accuracy of 98.88% and a minimum EIT detectability of 0.86 Q/frame. Its successful operation in capturing EIT lung respiration and heart rate biosignals from a volunteer is demonstrated

    A Wideband Contactless Electrical Impedance Tomography System

    Get PDF
    This work focuses on the development of a wideband contactless electrical impedance tomography (EIT) system. The system is developed from the aspects of the multifrequency capacitively coupled electrical impedance tomography (CCEIT) hardware, the impedance calculation model and the system evaluation. The hardware includes a 12-electrode CCEIT sensor, 6 sensing modules, a data acquisition module, and a personal computer (PC). The impedance calculation model is established by combining the mechanism modeling of the integrated circuits (ICs) and the empirical modeling of the measurement data with the least squares (LS) method. Experiments were carried out to evaluate the developed system, including the signal-to-noise ratio (SNR), the impedance measurement accuracy and the imaging performance. Experimental results show that the system achieves an SNR above 65.00 dB for the frequencies up to 20 MHz. Impedance measurement results indicate that the system has good impedance measurement accuracy at frequencies below 10 MHz and acceptable impedance measurement accuracy at 10 MHz - 20 MHz. It has particularly good performance at several specific frequencies, which can also serve as a high-performance single-frequency contactless EIT device. Imaging results show that the spectroscopic images reconstructed by the developed system are consistent with the actual distributions. Few types of research on contactless multifrequency EIT systems have been reported. So, this work is of great significance for further development and practical application of the newly emerged contactless EIT technique

    Time Stamp – A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications

    Get PDF
    Bioimpedance analysis is a noninvasive and inexpensive technology used to investigate the electrical properties of biological tissues. The analysis requires demodulation to extract the real and imaginary parts of the impedance. Conventional systems use complex architectures such as I-Q demodulation. In this paper, a very simple alternative time-to-digital demodulation method or ‘time stamp’ is proposed. It employs only three comparators to identify or stamp in the time domain, the crossing points of the excitation signal, and the measured signal. In a CMOS proof of concept design, the accuracy of impedance magnitude and phase is 97.06% and 98.81% respectively over a bandwidth of 10 kHz to 500 kHz. The effect of fractional-N synthesis is analysed for the counter-based zero crossing phase detector obtaining a finer phase resolution (0.51˚ at 500 kHz) using a counter clock frequency ( fclk = 12.5 MHz). Because of its circuit simplicity and ease of transmitting the time stamps, the method is very suited to implantable devices requiring low area and power consumption

    A high frame rate wearable EIT system using active electrode ASICs for lung respiration and heart rate monitoring

    Get PDF
    A high specification, wearable, electrical impedance tomography (EIT) system with 32 active electrodes is presented. Each electrode has an application specific integrated circuit (ASIC) mounted on a flexible printed circuit board, which is then wrapped inside a disposable fabric cover containing silver-coated electrodes to form the wearable belt. It is connected to a central hub that operates all the 32 ASICs. Each ASIC comprises a high- performance current driver capable of up to 6 mAp−p output, a voltage buffer for EIT and heart rate signal recording as well as contact impedance monitoring, and a sensor buffer that provides multi-parameter sensing. The ASIC was designed in a CMOS 0.35-μm high-voltage process technology. It operates from ±9-V power supplies and occupies a total die area of 3.9 mm2. The EIT system has a bandwidth of 500 kHz and employs two parallel data acquisition channels to achieve a frame rate of 107 frames/s, the fastest wearable EIT system reported to date. Measured results show that the system has a measurement accuracy of 98.88% and a minimum EIT detectability of 0.86 Q/frame. Its successful operation in capturing EIT lung respiration and heart rate biosignals from a volunteer is demonstrated

    Wideband Fully-Programmable Dual-Mode CMOS Analogue Front-End for Electrical Impedance Spectroscopy

    Get PDF
    This paper presents a multi-channel dual-mode CMOS analogue front-end (AFE) for electrochemical and bioimpedance analysis. Current-mode and voltage-mode readouts, integrated on the same chip, can provide an adaptable platform to correlate single-cell biosensor studies with large-scale tissue or organ analysis for real-time cancer detection, imaging and characterization. The chip, implemented in a 180-nm CMOS technology, combines two current-readout (CR) channels and four voltage-readout (VR) channels suitable for both bipolar and tetrapolar electrical impedance spectroscopy (EIS) analysis. Each VR channel occupies an area of 0.48 mm 2 , is capable of an operational bandwidth of 8 MHz and a linear gain in the range between -6 dB and 42 dB. The gain of the CR channel can be set to 10 kΩ, 50 kΩ or 100 kΩ and is capable of 80-dB dynamic range, with a very linear response for input currents between 10 nA and 100 μ A. Each CR channel occupies an area of 0.21 mm 2 . The chip consumes between 530 μ A and 690 μ A per channel and operates from a 1.8-V supply. The chip was used to measure the impedance of capacitive interdigitated electrodes in saline solution. Measurements show close matching with results obtained using a commercial impedance analyser. The chip will be part of a fully flexible and configurable fully-integrated dual-mode EIS system for impedance sensors and bioimpedance analysis
    corecore