308 research outputs found

    Angle-Closure Detection in Anterior Segment OCT based on Multi-Level Deep Network

    Full text link
    Irreversible visual impairment is often caused by primary angle-closure glaucoma, which could be detected via Anterior Segment Optical Coherence Tomography (AS-OCT). In this paper, an automated system based on deep learning is presented for angle-closure detection in AS-OCT images. Our system learns a discriminative representation from training data that captures subtle visual cues not modeled by handcrafted features. A Multi-Level Deep Network (MLDN) is proposed to formulate this learning, which utilizes three particular AS-OCT regions based on clinical priors: the global anterior segment structure, local iris region, and anterior chamber angle (ACA) patch. In our method, a sliding window based detector is designed to localize the ACA region, which addresses ACA detection as a regression task. Then, three parallel sub-networks are applied to extract AS-OCT representations for the global image and at clinically-relevant local regions. Finally, the extracted deep features of these sub-networks are concatenated into one fully connected layer to predict the angle-closure detection result. In the experiments, our system is shown to surpass previous detection methods and other deep learning systems on two clinical AS-OCT datasets.Comment: 9 pages, accepted by IEEE Transactions on Cybernetic

    Automated Image Quality Assessment for Anterior Segment Optical Coherence Tomograph

    Get PDF
    Optical Coherence Tomography (OCT) is a technique for diagnosing eye disorders. Image quality assessment (IQA) of OCT images is essential, but manual IQA is time consuming and subjective. Recently, automated IQA methods based on deep learning (DL) have achieved good performance. However, few of these methods focus on OCT images of the anterior segment of the eye (AS-OCT). Moreover, few of these methods identify the factors that affect the quality of the images (called "quality factors" in this paper). This could adversely affect the acceptance of their results. In this study, we define, for the first time to the best of our knowledge, the quality level and four quality factors of AS-OCT for the clinical context of anterior chamber inflammation. We also develop an automated framework based on multi-task learning to assess the quality and to identify the existing of quality factors in the AS-OCT images. The effectiveness of the framework is demonstrated in experiments

    A review of artificial intelligence applications in anterior segment ocular diseases

    Get PDF
    Background: Artificial intelligence (AI) has great potential for interpreting and analyzing images and processing large amounts of data. There is a growing interest in investigating the applications of AI in anterior segment ocular diseases. This narrative review aims to assess the use of different AI-based algorithms for diagnosing and managing anterior segment entities. Methods: We reviewed the applications of different AI-based algorithms in the diagnosis and management of anterior segment entities, including keratoconus, corneal dystrophy, corneal grafts, corneal transplantation, refractive surgery, pterygium, infectious keratitis, cataracts, and disorders of the corneal nerves, conjunctiva, tear film, anterior chamber angle, and iris. The English-language databases PubMed/MEDLINE, Scopus, and Google Scholar were searched using the following keywords: artificial intelligence, deep learning, machine learning, neural network, anterior eye segment diseases, corneal disease, keratoconus, dry eye, refractive surgery, pterygium, infectious keratitis, anterior chamber, and cataract. Relevant articles were compared based on the use of AI models in the diagnosis and treatment of anterior segment diseases. Furthermore, we prepared a summary of the diagnostic performance of the AI-based methods for anterior segment ocular entities. Results: Various AI methods based on deep and machine learning can analyze data obtained from corneal imaging modalities with acceptable diagnostic performance. Currently, complicated and time-consuming manual methods are available for diagnosing and treating eye diseases. However, AI methods could save time and prevent vision impairment in eyes with anterior segment diseases. Because many anterior segment diseases can cause irreversible complications and even vision loss, sufficient confidence in the results obtained from the designed model is crucial for decision-making by experts. Conclusions: AI-based models could be used as surrogates for analyzing manual data with improveddiagnostic performance. These methods could be reliable tools for diagnosing and managing anterior segmentocular diseases in the near future in remote areas. It is expected that future studies can design algorithms thatuse less data in a multitasking manner for the detection and management of anterior segment diseases
    • …
    corecore