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ABSTRACT 

 

Optical Coherence Tomography (OCT) is a technique for 

diagnosing eye disorders. Image quality assessment (IQA) of 

OCT images is essential, but manual IQA is time consuming 

and subjective. Recently, automated IQA methods based on 

deep learning (DL) have achieved good performance. 

However, few of these methods focus on OCT images of the 

anterior segment of the eye (AS-OCT). Moreover, few of 

these methods identify the factors that affect the quality of 

the images (called “quality factors” in this paper). This 

could adversely affect the acceptance of their results. In this 

study, we define, for the first time to the best of our 

knowledge, the quality level and four quality factors of AS-

OCT for the clinical context of anterior chamber 

inflammation. We also develop an automated framework 

based on multi-task learning to assess the quality and to 

identify the existing of quality factors in the AS-OCT 

images. The effectiveness of the framework is demonstrated 

in experiments. 

 

Index Terms— Optical coherence tomograph, Image 

quality assessment, Multi-task learning, Deep learning 

 

1. INTRODUCTION 

 

Optical coherence tomography (OCT) is widely used in 

ophthalmic research and healthcare for eye disorders. More 

recently, it has been shown to provide a novel disease metric 

for anterior uveitis, a significant cause of morbidity, 

enabling noninvasive objective quantification of the 

presence of inflammatory cells in the front of the eye [1, 2]. 

The utility of OCT images is dependent on their quality, 

which could be negatively impacted by machine or subject-

related factors [3]. Manual image quality assessment (IQA) 

is time-consuming and subjective, and whilst automated IQA 

addresses these limitations. As traditional IQA methods for 

OCT based on objective image parameters [4-6] may fail to 

address the issues of fidelity and suitability to clinical 

context [7, 8], recent studies [7-10] apply deep learning 

(DL) in this task. 

However, these DL methods are designed for retinal 

OCT, which captures images from the posterior part of the 

eye to detect eye disorders such as diabetic retinopathy and 

age-related macular degeneration. Few DL methods have 

focused on IQA of AS-OCT. AS-OCT captures images from 

the anterior segment of the eye, where diseases such as 

anterior uveitis occur [1, 2]. It can also be used for the 

angle-closure assessment for glaucoma evaluation [11, 12]. 

Moreover, few of these DL methods identify the factors 

that affect image quality (henceforth termed “quality 

factors”). Unlike an ophthalmologist, “black-box” methods 

trained on OCT images offer no explanation of their results, 

which could adversely affect their acceptance [13]. Thus, it 

could be helpful to show the quality factors when IQA 

methods provide an assessment result. 

To that end, we develop a novel definition for image 

quality level and quality factors for AS-OCT for the clinical 

context of the detection of anterior chamber inflammation. 

We also develop an automated framework to assess image 

quality and identify these quality factors. This framework 

uses multi-task learning to obtain knowledge of image 

quality and quality factors from AS-OCT images at the same 

time. Experiments show that learning knowledge of quality 

factors can improve the performance of IQA. 

 

2. METHOD 

 

2.1. Image Quality Level and Quality Factors 

 

Retinal image quality characteristics are anchored in 

anatomical context which is missing in images of other 

anatomical areas such as the anterior chamber. For example, 

artefacts caused by eyelash may appear in the image of AS-

OCT but will not appear in retinal OCT. To that end, we 

define three quality levels and four quality factors for AS-

OCT for the clinical context of the detection (‘ruling in’ and 

‘ruling out’) and quantification of anterior chamber 

inflammation. 

The three quality levels are: ‘Good’, ‘Limited’ and 

‘Poor’. ‘Good’ (Fig.1.a) is an image with a faithful view of 

the whole anterior chamber of the eye, without image 

artefact. ‘Limited’ (Fig.1.b) is an image with quality of 

reduced fidelity, but which still contains view sufficient to 

detect critical features of clinical interest. These images can 

be used to ‘rule in’ disease, but they cannot be used to ‘rule 



out’ disease as inflammatory features may be obscured by 

artefact or missing due to cropping. ‘Poor’ (Fig.1.c) is an 

image with quality that cannot be used, due to the absence of 

areas free from artefact. 

 

Fig. 1. Examples of three AS-OCT images with different 

quality level. 

The four quality factors are: 1) ‘Eyelash’ (Fig.2.a) that 

is artefactual hyper and hyporeflective signal within the 

anterior chamber created by eyelash. 2) ‘Glare’ (Fig.2.b) 

that is a hyperreflective line of signal which occurs due to 

the fixation light from the AS-OCT camera. 3) ‘Left-

cropped’ (Fig.2.c) and 4) ‘Right-cropped’ (Fig.2.d) that 

describe the anterior chamber cross sectional image is 

cropped at the left or right edge of the image. Images with 

good quality do not contain any quality factors, while 

limited or poor images contain at least one quality factor.  

 

Fig. 2. The examples of four quality factors. 

 

2.2. Automated Framework for AS-OCT IQA 

 

We propose an automated IQA framework based on multi-

task learning (MTL) [14] to assess the quality and identify 

the quality factors for AS-OCT images. To inject the 

knowledge of image quality from quality factors into our 

framework, we apply hard parameter sharing MTL [14]. It 

uses shared hidden layers to obtain shared knowledge from 

all the tasks (i.e., IQA and identifying different quality 

factors) and uses different output layers for separate tasks. 

Our framework (Fig.3) consists of feature extraction module 

based on shared hidden layers and assessment module based 

on output layers for separate tasks. 

Feature extraction module is flexible and uses different 

convolutional neural networks (CNN), such as VGG [15], 

ResNet [16] and DenseNet [17], as feature extractor to learn 

shared knowledge from images. It outputs the feature maps 

extracted by the feature extractor. Assessment module 

classifies the quality level and identifies quality factors of 

the AS-OCT images. It flattens the extracted feature maps 

and send them into different fully connected (FC) layer 

blocks, each of which has 128 neural units. Among these 

blocks, one is used to predict the image quality, and its loss 

(Lossquality) is multi-class cross entropy loss. The other N 

blocks are used to identify the existing of quality factors, 

and the loss of the i-th block (Lossi) is binary cross entropy 

loss. The final loss of the framework is: 

Loss = wquality*Lossquality + (1 - wquality)/N*(∑Lossi)     (1) 

where wquality is set as 0.6, empirically. 

 

Fig. 3. The architecture of the IQA framework. 

 

2.3. Implementation 

 

Our framework is implemented in PyTorch. Its 

implementations of VGG16, ResNet18, ResNet34, 

ResNet50, and DenseNet121 are used as feature extractors 

in the feature extraction module. Image data are divided into 

training, validation, and testing sets (70%, 15%, and 15%, 

respectively). We ensure the ratios of quality labels are the 

same over the three sets. All images are resized to 256*256 

pixels. Rotation and brightness are used as data 

augmentation. Adam optimizer is used to optimize the 

framework. Learning rate, batch size and epoch are 0.001, 

64 and 200, respectively. To balance the number of quality 

labels in each training epoch, Nsmaple (set as 512 empirically) 

images of good, limited and poor labels are randomly 

extracted (with replacement) from training set, respectively, 

and combined as the training data in each epoch. To 

encourage the framework to learn general knowledge of 

quality, the framework is only trained based on pure IQA 

task in the first P (set as 10 empirically) epochs. This means 

that only the feature extractor and the FC layer block for 

predicting quality can be optimized, and the loss is Lossquality 

only. After P epochs, the framework uses the Loss in 

equation (1) as the loss to optimise all the blocks. Early 

stopping is applied to avoid overfitting. The training will be 

halted if the loss value in validation set does not decrease 

after 30 epochs. 

Table 1. The number/proportions of quality factors in the 

limited, poor, and total AS-OCT images. 

Quality 

Factor 

Limited 

(1827) 

Poor 

(405) 

Total 

(2825) 

Eyelash 730/40.0% 291/71.9% 1021/36.1% 

Glare 177/9.7% 6/1.5% 183/6.5% 

Left-cropped 350/19.2% 6/1.5% 356/12.6% 

Right-cropped 1009/55.2% 34/8.4% 1043/36.9% 

 



3. EXPERIMENTS AND RESULTS 

 

3.1. Dataset 

 

The experimental dataset includes 2,825 AS-OCT images 

(593 ‘Good’, 1,827 ‘Limited’ and 405 ‘Poor’), from 45 

eyes of 24 patients, collected from a specialist hospital in 

London. Each image was annotated by at least two senior 

ophthalmic clinicians. They then came to a final agreement 

for the label. Table 1 shows the number and proportions of 

each quality factor in limited, poor and total images.  

 

3.2. Results 

 

To show that learning knowledge of quality factors can 

improve IQA, we train the framework with MTL (trained for 

the IQA and quality factor identification tasks) and without 

MTL (purely trained for the IQA task). To obtain a robust 

result, we repeat the experiment 10 times. The training, 

validation and testing sets are randomly split from original 

dataset in each round. As IQA is multi-class classification, 

we use macro-averaged precision, recall and F1 as 

evaluation metrics in each round and calculate the average 

result in the testing datasets over 10 rounds. Table 2 shows 

the IQA performance of the framework (with and without 

MTL) based on different feature extractors. 

Table 2. The IQA performance with and without MTL. 

Model MTL Precision Recall F1 

VGG16 
No  0.853 0.856 0.852 

Yes 0.872 0.895 0.881 

ResNet18 
No  0.861 0.876 0.865 

Yes 0.864 0.873 0.866 

ResNet34 
No  0.856 0.865 0.854 

Yes 0.863 0.860 0.855 

ResNet50 
No  0.844 0.846 0.836 

Yes 0.861 0.850 0.847 

DenseNet121 
No  0.839 0.855 0.831 

Yes 0.863 0.876 0.865 

Table 2 shows that VGG16 achieves the best 

performance. It reaches macro-averaged precision, recall, 

and F1 of 0.872, 0.895 and 0.881, respectively. We use it as 

an example model to further show the performance of our 

framework. Table 3 shows the averaged result over 10 

rounds in the testing datasets for predicting each quality 

level and each quality factor (binary classification). We use 

precision, recall and F1 for binary classification as 

evaluation metrics. Table 4 shows the confusion matrix of 

the quality level classification (averaged result over 10 

rounds in the testing datasets). 

 

3.3. Discussion 

 

Table 2 indicates that learning knowledge of quality factors 

can improve IQA performance. In most cases, models based 

on MTL outperform equivalent models without MTL. This 

indicates that future study can consider finding relevant 

“quality factors” to improve the IQA performance. 

Table 3. The performance of VGG16 for predicting each 

quality level and each quality factor. 

Label Precision Recall F1 

Quality 
Level 

Good 0.801 0.912 0.851 

Limited 0.943 0.895 0.918 

Poor 0.872 0.879 0.874 

Quality 
Factor 

Eyelash 0.947 0.865 0.904 

Glare 0.870 0.788 0.819 

Left-cropped 0.865 0.831 0.841 

Right-cropped 0.949 0.898 0.921 

Table 3 shows that our framework based on VGG16 has 

higher recall of ‘Good’ (0.912) compared with ‘Limited’ and 

‘Poor’. Table 4 provides more information about this result. 

Interestingly, no image labelled as ‘Good’ is predicted as 

‘Poor’, and no image labelled as ‘Poor’ is predicted as 

‘Good’. The results could indicate that our framework has 

the potential to support clinical experts to retrieve images 

with good quality from AS-OCT dataset. Some studies (e.g., 

[18, 19]) screen suitable medical images based on traditional 

image-based parameters such as brightness, contrast, and 

blurriness. However, these parameters cannot be directly 

applied to screen AS-OCT images used for detecting 

anterior chamber inflammation. Table 3 also shows that our 

framework is able to identify the quality factors. The F1 of 

predicting ‘Eyelash’ and ‘Right-cropped’ achieve 0.904 and 

0.921, respectively. The F1 of predicting ‘Glare’ and ‘Left-

cropped’ are relatively low as they only represent 6.5% and 

12.6% of the original dataset. 

Table 4. The confusion matrix for predicting the quality 

level based on VGG16. 

Label 
Predicted by the Framework 

Good Limited Poor 

Good 81.2 7.8 0.0 

Limited 20.7 246.2 8.1 

Poor 0.0 7.4 53.6 

Our study has some limitations. We concluded and 

defined four quality factors from our dataset, but we believe 

the categories can be further extended. Although it may not 

be appropriate to directly extrapolate these factors to other 

AS-OCT data acquired for different clinical purposes (e.g., 

to examine corneal health or iris disorders), we believe these 

factors are likely to appear in other AS-OCT datasets. We 

also believe these factors could provide a novel insight for 

future study related to the IQA of AS-OCT. 

Unlike IQA in natural images (e.g., [20, 21]) which 

have various data sources for evaluation, IQA datasets for 

medical image are usually limited. We have set up 

https://www.zooniverse.org/projects/lolasolebo/eyes-on-

eyes, a Citizen Science project [22] that encourages the 

public to access and annotate our AS-OCT data. 



Our framework looks at B scans rather than the volumes 

of an eye. This reflects the current practice of scan (rather 

than volume) based image analysis in AS-OCT [1, 2, 5, 11]. 

However, future work may need to consider developing 

cumulative quality score for volume scans. 

VGG, even though achieve best performance in the 

framework, is slower than more modern alternative. Our 

framework is flexible and can make use of a variety of 

feature extractors. Better extractors can also be plugged in to 

the framework. This will be addressed in our future work. 

 

4. CONCLUSION 

 

Few DL-based IQA methods for OCT focus on AS-OCT. 

Moreover, few of these methods aim to identify the factors 

that affect the quality in the images, which could adversely 

affect the acceptance of results. This study aims to tackle 

these two problems. The contributions of this research are: 

(1) We define, for the first time to our best knowledge, the 

quality level and the quality factors for AS-OCT images for 

the clinical context of anterior chamber inflammation; (2) 

We propose an automated IQA framework that can assess 

image quality and identify the existing of quality factors for 

AS-OCT images. Experiments show that learning knowledge 

of quality factors can improve IQA performance, and that 

this framework could support clinical experts to screen 

suitable AS-OCT images for diagnosis or study. 
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