8,085 research outputs found
Microfluidic generation of networked droplet collections and lipid membrane constructs
We report on microfluidic strategies to generate several multi-compartment membrane-based structures, including droplet interface bilayer networks and multi-compartment vesicles. These developments allow the current status quo— where microdroplets are used as isolated vessels— to be changed. By linking droplets together with lipid membranes, higher order systems can be generated, with particular ramifications for bottom-up synthetic biology and for functional droplet-based microreactors and biodevices
Regional multi-compartment ecological risk assessment:establishing cadmium pollution risk in the northern Bohai Rim, China
Ecological risk assessment (ERA) has been widely applied in characterizing the risk of chemicals to organisms and ecosystems. The paucity of toxicity data on local biota living in the different compartments of an ecosystem and the absence of a suitable methodology for multi-compartment spatial risk assessment at the regional scale has held back this field. The major objective of this study was to develop a methodology to quantify and distinguish the spatial distribution of risk to ecosystems at a regional scale. A framework for regional multi-compartment probabilistic ecological risk assessment (RMPERA) was constructed and corroborated using a bioassay of a local species. The risks from cadmium (Cd) pollution in river water, river sediment, coastal water, coastal surface sediment and soil in northern Bohai Rim were examined. The results indicated that the local organisms in soil, river, coastal water, and coastal sediment were affected by Cd. The greatest impacts from Cd were identified in the Tianjin and Huludao areas. The overall multi-compartment risk was 31.4% in the region. The methodology provides a new approach for regional multi-compartment ecological risk assessment
Fabrication of uniform multi-compartment particles using microfludic electrospray technology for cell co-culture studies
Footnote in article: Paper submitted as part of the 3rd European Conference on Microfluidics ... 2012In this work, we demonstrate a robust and reliable approach to fabricate multi-compartment particles for cell co-culture studies. By taking advantage of the laminar flow within our microfluidic nozzle, multiple parallel streams of liquids flow towards the nozzle without significant mixing. Afterwards, the multiple parallel streams merge into a single stream, which is sprayed into air, forming monodisperse droplets under an electric field with a high field strength. The resultant multi-compartment droplets are subsequently cross-linked in a calcium chloride solution to form calcium alginate micro-particles with multiple compartments. Each compartment of the particles can be used for encapsulating different types of cells or biological cell factors. These hydrogel particles with cross-linked alginate chains show similarity in the physical and mechanical environment as the extracellular matrix of biological cells. Thus, the multi-compartment particles provide a promising platform for cell studies and co-culture of different cells. In our study, cells are encapsulated in the multi-compartment particles and the viability of cells is quantified using a fluorescence microscope after the cells are stained for a live/dead assay. The high cell viability after encapsulation indicates the cytocompatibility and feasibility of our technique. Our multi-compartment particles have great potential as a platform for studying cell-cell interactions as well as interactions of cells with extracellular factors. © 2013 AIP Publishing LLC.published_or_final_versio
Noise-assisted spike propagation in myelinated neurons
We consider noise-assisted spike propagation in myelinated axons within a
multi-compartment stochastic Hodgkin-Huxley model. The noise originates from a
finite number of ion channels in each node of Ranvier. For the subthreshold
internodal electric coupling, we show that (i) intrinsic noise removes the
sharply defined threshold for spike propagation from node to node, and (ii)
there exists an optimum number of ion channels which allows for the most
efficient signal propagation and it corresponds to the actual physiological
values.Comment: 8 pages, 12 figures, accepted for publication in Phys. Rev.
Fat fraction mapping using bSSFP Signal Profile Asymmetries for Robust multi-Compartment Quantification (SPARCQ)
Purpose: To develop a novel quantitative method for detection of different
tissue compartments based on bSSFP signal profile asymmetries (SPARCQ) and to
provide a validation and proof-of-concept for voxel-wise water-fat separation
and fat fraction mapping. Methods: The SPARCQ framework uses phase-cycled bSSFP
acquisitions to obtain bSSFP signal profiles. For each voxel, the profile is
decomposed into a weighted sum of simulated profiles with specific
off-resonance and relaxation time ratios. From the obtained set of weights,
voxel-wise estimations of the fractions of the different components and their
equilibrium magnetization are extracted. For the entire image volume,
component-specific quantitative maps as well as banding-artifact-free images
are generated. A SPARCQ proof-of-concept was provided for water-fat separation
and fat fraction mapping. Noise robustness was assessed using simulations. A
dedicated water-fat phantom was used to validate fat fractions estimated with
SPARCQ against gold-standard 1H MRS. Quantitative maps were obtained in knees
of six healthy volunteers, and SPARCQ repeatability was evaluated in scan
rescan experiments. Results: Simulations showed that fat fraction estimations
are accurate and robust for signal-to-noise ratios above 20. Phantom
experiments showed good agreement between SPARCQ and gold-standard (GS) fat
fractions (fF(SPARCQ) = 1.02*fF(GS) + 0.00235). In volunteers, quantitative
maps and banding-artifact-free water-fat-separated images obtained with SPARCQ
demonstrated the expected contrast between fatty and non-fatty tissues. The
coefficient of repeatability of SPARCQ fat fraction was 0.0512. Conclusion: The
SPARCQ framework was proposed as a novel quantitative mapping technique for
detecting different tissue compartments, and its potential was demonstrated for
quantitative water-fat separation.Comment: 20 pages, 7 figures, submitted to Magnetic Resonance in Medicin
Spatially regularized estimation for the analysis of DCE-MRI data
Competing compartment models of different complexities have been used for the quantitative analysis of Dynamic Contrast-Enhanced Magnetic Resonance Imaging data.
We present a spatial Elastic Net approach that allows to estimate the number of compartments for each voxel such that the model complexity is not fixed a priori.
A multi-compartment approach is considered, which is translated into a
restricted least square model selection problem. This is done by
using a set of basis functions for a given set of candidate rate
constants. The form of the basis functions is derived from a kinetic
model and thus describes the contribution of a specific compartment.
Using a spatial Elastic Net estimator, we chose a sparse set of basis functions per voxel, and hence, rate constants of compartments.
The spatial penalty takes into account the voxel structure of an image and performs better than a penalty treating voxels independently.
The proposed estimation method is evaluated for simulated images and applied to an in-vivo data set
A deterministic model for the occurrence and dynamics of multiple mutations in hierarchically organized tissues
We model a general, hierarchically organized tissue by a multi compartment
approach, allowing any number of mutations within a cell. We derive closed
solutions for the deterministic clonal dynamics and the reproductive capacity
of single clones. Our results hold for the average dynamics in a hierarchical
tissue characterized by an arbitrary combination of proliferation parameters.Comment: 4 figures, to appear in Royal Society Interfac
Discontinuous Galerkin Methods for Mass Transfer through Semi-Permeable Membranes
A discontinuous Galerkin (dG) method for the numerical solution of
initial/boundary value multi-compartment partial differential equation (PDE)
models, interconnected with interface conditions, is presented and analysed.
The study of interface problems is motivated by models of mass transfer of
solutes through semi-permeable membranes. More specifically, a model problem
consisting of a system of semilinear parabolic advection-diffusion-reaction
partial differential equations in each compartment, equipped with respective
initial and boundary conditions, is considered. Nonlinear interface conditions
modelling selective permeability, congestion and partial reflection are applied
to the compartment interfaces. An interior penalty dG method is presented for
this problem and it is analysed in the space-discrete setting. The a priori
analysis shows that the method yields optimal a priori bounds, provided the
exact solution is sufficiently smooth. Numerical experiments indicate agreement
with the theoretical bounds and highlight the stability of the numerical method
in the advection-dominated regime
- …
