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Abstract

Competing compartment models of different complexities have been
used for the quantitative analysis of Dynamic Contrast-Enhanced Mag-
netic Resonance Imaging data. We present a spatial Elastic Net approach
that allows to estimate the number of compartments for each voxel such
that the model complexity is not fixed a priori. A multi-compartment
approach is considered, which is translated into a restricted least square
model selection problem. This is done by using a set of basis functions for
a given set of candidate rate constants. The form of the basis functions
is derived from a kinetic model and thus describes the contribution of a
specific compartment. Using a spatial Elastic Net estimator, we chose a
sparse set of basis functions per voxel, and hence, rate constants of com-
partments. The spatial penalty takes into account the voxel structure of an
image and performs better than a penalty treating voxels independently.
The proposed estimation method is evaluated for simulated images and
applied to an in-vivo data set.

Keywords: DCE-MRI; Elastic Net; Model Selection; Multi-compartment
Model; Spatially Penalized Estimation

1 Introduction
Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) provides
an imaging series of contrast agent (CA) concentration in some tissue of interest.
For example, Fig. 1 depicts parts of a DCE-MRI series of a breast cancer patient.
After injection of a CA, the CA concentration at each time point is computed
from the MR signal on each voxel Buckley and Parker (2005). Thus, CA perfusion
∗To whom correspondence should be addressed: volker.schmid@lmu.de.
†Department of Statistics, Ludwig-Maximilians-Universität Munich, Germany.
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in the tissue is recorded. The dynamic behavior of CA uptake allows to specify
malignancy, type and grading of tumors and to assess therapy success Padhani
et al. (2005).

t = 0 seconds t = 12 seconds t = 24 seconds t = 36 seconds

t = 85 seconds t = 182 seconds t = 279 seconds t = 376 seconds

Figure 1: DCE-MRI scan of a breast cancer patient showing the contrast agent concentration
over time

Quantitative characterization of CA uptake can be done with model-driven
methods or with data-driven methods. With data-driven methods like nonpara-
metric regression no a priori compartment-structure has to be defined Schmid
et al. (2009). Model-driven methods are based on pharmacokinetic models de-
scribing the exchange of CA between different, well-mixed compartments Tofts
and Kermode (1991). Such compartment models provide quantitative physiolog-
ical parameters characterizing the amount and rate of capillary leakage Padhani
et al. (2005).

However, several compartmental models with different, a priori fixed, num-
bers of compartments have been proposed and it remains unclear which model
to use. This is particularly the case when the imaged tissue is heterogeneous
as often observed in cancerous tissue. Therefore, several authors propose more
complex models to describe perfusion in tissue. For example, the two compart-
ment exchange model (2CXM) has separate compartments for arterial plasma
and interstitial plasma Brix et al. (2009); Sourbron and Buckley (2011). Multi-
compartment models allow for two to three kinetically distinct tissue compart-
ments to describe CTCs on a region of interest level Port et al. (1999); and in
Kärcher and Schmid (2010), a hierarchical Bayesian two-compartment model has
been applied to DCE-MRI on a voxel level. However, the adequate number of
compartments might be different in different types of tissue and—as cancerous
tissue is often heterogeneous—it might even vary over a field of voxels. That is
why, in this paper, we aim to estimate the number of compartments per voxel
from the data. This is important as the degree of tissue heterogeneity itself is
diagnostically informative.

To this end, a multi-compartment model is fitted using likelihood based reg-
ularization techniques. We use a bundle of exponential basis functions, each of
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which is derived from the differential equation describing the tracer uptake of
a tissue compartment. Like this, corresponding coefficients remain interpretable
and linked to physiological parameters. The coefficients are sparsely selected and
estimated while penalizing for an increasing number of parameters. By selecting
clusters of nonzero coefficients, the number of used compartments is implicitly
selected as well. With this approach we combine the advantages of model-driven
and data-driven methods, i.e. , a good fit to the data and biologically interpretable
parameter.

An approach of sparse basis selection—not considering the spatial image struc-
ture though—has also been proposed for compartment models used in positron
emission tomography (PET) Gunn et al. (2002). The basis pursuit approach
proposed there corresponds to unrestricted Lasso Tibshirani (1996) estimation.
However, compared to the Lasso, Ridge regression Hoerl and Kennard (1970) has
often been shown to produce better results in case of highly correlated covariates.
Therefore, we use a restricted Elastic Net, combining the advantages of Ridge and
Lasso estimation Zou and Hastie (2005).

Spatial information is frequently used in image processing, most prominently
in neuroimaging Gössl et al. (2001); Zou et al. (2004); Christensen and Yetkin
(2005). For DCE-MRI, several authors have proposed Bayesian hierarchical mod-
els (assuming a fixed number of compartments) to account for the spatial struc-
ture intrinsic in an image Schmid et al. (2006); Kelm et al. (2009); Sommer and
Schmid (2012).

For our approach we need to (1) restrict the parameters to be non-negative
to ensure the positiveness of the physiological parameters; (2) we include prior
spatial information by assuming spatial smoothness of the parameters. We do
so by penalizing quadratic differences of neighboring coefficients. With this spa-
tially penalized maximum likelihood (ML) approach we use the intrinsic spatial
information given by the voxel structure of the image.

The paper is organized as follows. In Section 2, we introduce a multi-compartment
model as a generalization of commonly used compartment models. In Subsection
2.3 and 2.4 the proposed estimation techniques—the voxelwise Elastic Net and
spatial Elastic Net—are introduced. Then, the proposed approach is evaluated
for simulated data (Section 3) as well as for in vivo data from a breast cancer
study (Section 4). Section 5 concludes.

2 Methods

2.1 Compartment Models

Several compartmental architectures of different complexities have been proposed
for the analysis of DCE-MRI data. A common model is the so-called "extended"
Tofts model, assuming a plasma compartment and an interstitial space compart-

3



ment Tofts and Kermode (1991),

CT (t) = vpCp(t) + Cp(t) ∗Ktrans exp(−kept), (1)

where CT (t) is the CA concentration of interest at time point t = 1, . . . , T ; ∗
denotes the convolution operator, that is,

Cp(t) ∗ exp(−kept) =

∫ t

0

Cp(t− τ) exp(−kepτ)dτ. (2)

The arterial input function (AIF) Cp(t) is assumed to be known and parame-
ters Ktrans, kep and the plasma volume fraction vp need to be estimated. The
parameters do have a biological meaning: kep is the rate constant at which the
interstitial space compartment exchanges with the blood plasma and Ktrans is the
corresponding volume transfer constant. In the original, "simple" Tofts model,
no additional plasma contribution is assumed (i.e., vp = 0).

2.2 Multi Tissue Compartment Model

As a generalization of the model with one tissue compartment (1) and its exten-
sions described above, the multi-compartment model with q tissue compartments
can be defined by

CT (t) = vpCp(t) +

q∑

k=1

Cp(t) ∗Ktrans
k exp(−kepk

t). (3)

The volume fraction of the plasma compartment is denoted by vp. As arterial
input function (AIF) we use a bi-exponential function of the form proposed by
Tofts and Kermode (1991)

Cp(t) = D(a1 exp(−m1t) + a2 exp(−m2t)), (4)

with a1 = 3.99 kg/l, a2 = 4.78 kg/l, m1 = 0.144 min−1, m2 = 0.0111 min−1.
The constant D is the actual dosage of tracer in mol/kg. Due to measurement
error, the concentration Ci

T (t) at time points t = 0, . . . , T in voxel i = 1, . . . , N
is modeled as:

Ci
T (t) = vp,iCp(t) +

q∑

k=1

Ktrans
k,i Ψk(t) + εi,t, (5)

where εi,t ∼ N(0, σ2
i ) is a Gaussian noise term and Ψk(t) = Cp(t) ∗ exp(−kepk

t)
are basis functions. Each tissue compartment k is characterized by how fast it
exchanges with the plasma compartment, expressed by its rate constant kepk

.
As candidate values we consider log(kepk

) ∈ {−3,−2.9,−2.8, . . . , 2.9, 3}, and the
adequate values need to be selected. Moreover, each compartment is character-
ized by its transfer constant Ktrans

k . The transfer constant is obtained by the
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product of the volume fraction vk and the rate constant of the compartment
and is hence non-negative: Ktrans

k = kepk
· vk ≥ 0. Thus, for voxel i, the vector

θi = (θi,0, . . . , θi,q)
T = (vp,i, K

trans
i,1 , . . . , Ktrans

i,q )T is unknown and has to be esti-
mated. Wherever the estimated transfer constant is positive (K̂trans

i,k > 0), the
corresponding compartment, resp. kepk

value, is selected. From (5) it can be
seen that a regression problem with predictors Cp(t),Ψk(t), k = 1, . . . , q, is to be
solved. The Appendix depicts a subset of those predictors.

When estimating the parameter vector θi with simple ML inference, under
the assumption of independent Gaussian distributed observation errors εi,t, the
residual sum of squares

∑
t(C

i
T (t)− Ĉi

T (t))2 has to be minimized. However, here
the θi need to be non-negative, and, hence, the pure ML-estimate is

θ̂ML
i = argminθi≥0

{∑

t

(
Ci
T (t)− z(t)T θi

)2
}
, (6)

with
z(t) = D(Cp(t),Ψ1(t), . . . ,Ψq(t))

T , t = 1, . . . , T.

Since, however, we have a large number of θi parameters and adjacent en-
tries of z(t) are highly correlated (due to construction), pure ML-estimates are
unstable or even not unique. Therefore, we use two penalized approaches.

2.3 Voxelwise Regularized Estimation

In order to stabilize the estimation of parameter vector θi, the log-likelihood is
additively corrected by a penalty term J(θi). More precisely, for a fixed voxel i,
we use the estimator

θ̂i = argminθi≥0

{∑

t

(
Ci
T (t)− z(t)T θi

)2
+ λJ(θi)

}
, (7)

with z(t) as given in (6). The strength of penalization is controlled by λ. The
crucial point, however, is to choose an appropriate penalty J(θi). For example,
Vega-Hernandez et al. (2008) discussed the use of different penalties for solving
the so-called inverse problem of the electroencephalography (EEG) in neuro-
science.

A well established regularization technique which was constructed in partic-
ular for high-dimensional problems with highly correlated explanatory variables
(as found in z) is the so-called Elastic Net Zou and Hastie (2005), with penalty

J(θi) = α

q∑

k=0

θ2i,k + (1− α)

q∑

k=0

|θi,k|. (8)
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Alternatively, the corresponding estimate can be written as

θ̂i = argminθi≥0

{∑

t

(
Ci
T (t)− z(t)T θi

)2
+ λ

q∑

k=0

θ2i,k

}
,

subject to
q∑

k=0

|θi,k| ≤ s. (9)

This optimization problem can be solved using quadratic programming methods,
for example, the R package quadprog Turlach and Weingessel (2011). Before
running the optimization algorithm, entries of z are scaled to have unit variance
over time, because otherwise θk corresponding to entries of z with smaller variance
would implicitly undergo higher penalization.

Seeking for a sparse solution in a high dimensional predictor space, we use
a two-stage estimation procedure that separates model selection from parameter
shrinkage similar to the relaxed Lasso Meinshausen (2007). In a first step, a set
of basis functions is selected with the aid of restrictive L1- and L2-penalties. Due
to the L1-type penalty term in (9), coefficients from {θ̂i,0, . . . , θ̂i,q} = { ˆvp,i, K̂

trans
i,1 ,

. . . , K̂trans
i,q } may be set to zero (see e.g. Zou and Hastie (2005)), which means

that corresponding arterial plasma or tissue compartments are excluded. As the
basis functions are highly correlated non-vanishing coefficients mostly appear in
clusters. From each cluster only the basis function with maximal contribution is
selected to obtain a sparse basis. Like this, the selected predictors correspond to
compartments the exchange rates of which are different enough to be biologically
meaningful. In a second step, we refit the sparse model without penalization
(pure ML-estimates).

Tuning parameters λ and s can, for example, be determined using the Bayesian
information criterion (BIC) as described in Hastie et al. (2009). For given (λ, s)
the BIC can be calculated as

BIC(λ,s) = −2 log(L(CT , θ̂(λ,s))) + log(N · T ) · (p).

Here, p = q̂ + 1(v̂p > 0) corresponds to the number of selected predictors and
L(CT , θ̂(λ,s)) is the Likelihood of the observed concentration CT evaluated at the
Elastic Net estimates (9) of all voxels.

2.4 Spatially Regularized Estimation

So far, voxels have been treated separately, and for each voxel i parameters θi
have been fitted independently of each other. Since, however, there is some spa-
tial structure across voxels, parameters θ = (θ1, . . . , θN)T from all voxels should
be estimated taking this structure into account. We assume a neighborhood
structure where adjacent voxels are neighbors. That is, each voxel has four direct
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neighbors unless it lies at the edge of the image. Therefore, parameters for voxel
i are now estimated by

θ̂i = argminθi≥0

{∑

t

(
Ci
T (t)− z(t)T θi

)2
+ λJi(θ)

}
, (10)

with penalty

Ji(θ) = αQi(θ) + (1− α)

q∑

k=0

|θi,k|. (11)

Similar to the voxelwise regularization, the L1-type penalty term only penalizes
parameters of voxel i and favors some of the coefficients to be set to zero. The
quadratic penalty term Qi, however, enforces some spatial smoothness of param-
eters θ by penalizing differences of neighboring θj:

Qi(θ) =
∑

j∈∂(i)
‖θi − θj‖2 =

∑

j∈∂(i)

q∑

k=0

(θi,k − θj,k)2 .

Here, ∂(i) is the set of voxels that are direct neighbors of voxel i. Note that
the penalty terms Ji and Qi do depend only on parameters corresponding to
neighboring voxels: Qi(θ) = Q(θi, θ∂(i)) and Ji(θ) = J(θi, θ∂(i)) with θ∂(i) =
(θj)j∈∂(i).

Computational Issues

For the computation of the spatially regularized estimates, we introduce pseudo-
observations; see also Zou and Hastie (2005). More precisely, for voxel i, we
define the vector of “response values”

yi = (Ci
T (0), . . . , Ci

T (T ),
√
λ · ξi)T ,

where ξi =
(
θj
)
j∈∂(i) are the parameter values of neighboring voxels used as

pseudo-observations. The design matrix

X =

(
Z√
λ ·Di

)

consists of

Z =




z(0)T

z(1)T

...
z(T )T
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and

Di =




I
...
I







|∂(i)| times

where I is the identity matrix of dimension (q + 1)× (q + 1). Thus, we have

θ̂i = argminθi≥0
{

(yi −Xθi)T (yi −Xθi)
}
,

subject to
q∑

k=0

|θi,k| ≤ s.

Since parameters for neighboring voxels, θ∂(i), are unknown but needed for
the calculation of ξi, we plug in current estimates θ̂∂(i) and iterate this procedure
over all voxels until convergence. For efficiency we use a parallel update of voxels
following a checkerboard pattern that uses conditional independence from other
voxels given all neighboring voxels. As starting values we use the estimates which
describe the mean concentration time curve (CTC) over all voxels. Predictors
are selected using the same two-step estimation procedure as for the voxelwise
regularized estimation.

3 Simulation Study

3.1 Simulation Setup

To evaluate the proposed voxelwise and spatial Elastic Net, we simulated a DCE-
MR image of 75 × 75 voxels. We chose different parameter combinations of the
multi-compartment model with blocks simulated from one, two or three com-
partments (q = 1, 2, 3) with or without contribution of the plasma compartment
(vp = 0.1 or vp = 0). In the left block, the true underlying parameters for the
CTCs are kep1

= 0.2 and Ktrans
1 = 0.2; in the central block kep1

= 0.2, kep2
= 4,

Ktrans
1 = 0.1, and Ktrans

2 = 2; in the right block kep1
= 0.2, kep2

= 1, kep3
= 4,

Ktrans
1 = 0.07, Ktrans

2 = 0.3, and Ktrans
3 = 1. Gaussian noise was added to the

CTCs for each voxel with standard deviation σ = 0.05. The Appendix shows the
simulated CTCs and gives a more detailed sketch of the simulation design. The
optimal penalization parameters λ∗ and s∗ for the proposed methods were chosen
corresponding to lowest BIC values.

3.2 Results

Fig. 2 summarizes the model selection for the simulated image comparing the ex-
tended Tofts model and the voxelwise and spatially regularized multi-compartment
models; it shows the number q of selected basis functions Ψk and if the AIF Cp
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Figure 2: Results of simulation study: estimated number of tissue compartments q̂, estimated
inclusion of plasma compartment v̂p and sum of squared errors (SSE)

was included as predictor. The extended Tofts model has a fixed number of
compartments (one tissue and one plasma compartment) for all voxels. With the
voxelwise and spatial Elastic Net one to four tissue compartments (q̂) are selected
as well as—optionally—a plasma compartment (v̂p). The spatial regularization
helps to select the number of parameters more sparsely compared to the voxel-
wise model. The estimated model complexity corresponds very well to the true
underlying model.

Fig. 2 also depicts the sum of squared errors (SSE) per voxel. For the voxelwise
and spatial Elastic Net the SSE is at a similar level. In the left block, the spatial
Elastic Net has a slightly increased SSE. For the extended Tofts model the SSE
is much higher in the second and third blocks, as the Tofts model does not
account for the contribution of additional tissue compartments. This is why
both restricted multi-compartment models have considerably lower BIC values
compared to the extended Tofts model. In Table 1 the BIC as well as the average
number of selected coefficients per voxel is shown. The BIC is lowest for the
spatial Elastic Net.

Let’s now discuss the model selection with the spatial Elastic Net in more de-
tail. Fig. 3 depicts the results of the spatial Elastic Net for three of the simulated
voxels: one from the left, center and right block respectively. For the voxel from
the left block (q = 1) only one basis function is selected and the true estimated
coefficient is close to the true underlying coefficient (Fig. 3). The number of com-
partments q is correctly estimated to be one for almost all voxels in the left block
(Fig. 2). In the center block q is sometimes overestimated—occasionally three
instead of two basis functions are selected. This is mainly because the first basis
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Figure 3: Results of spatially regularized estimation: Selection of basis functions and corre-
sponding curve fits for three simulated voxels from the left (q = 1), center (q = 2) and right
(q = 3) block

function is often additionally selected. For a CTC simulated from three com-
partments (right block, q = 3), the contributing basis functions are too similar
and—in the voxel depicted—only two basis functions are selected (Fig. 3). Also
for other voxels in the right block the estimate for q is often two, sometimes three.
This result could be expected. In all of the three blocks, the fitted CTCs (gray)
and the true underlying CTCs (blue) coincide (Fig. 3). Model selection for the
vp-term matches the true underlying models: in the upper half the AIF is mostly
included in the model, in the lower half it is mostly excluded (Fig. 2). Further-
more, with the spatial regularization smooth parameter maps are obtained that
match the true underlying parameters very well (see the Appendix).

4 DCE-MRI Breast Cancer Study

4.1 Data Description

To evaluate the clinical use of our approach we use a subset of a previously
analyzed DCE-MRI study on breast cancer Schmid et al. (2006). The dataset
consists of six patients with breast tumors, scanned once at the beginning of
treatment and again after two weeks of chemotherapy. The scans were acquired
with a 1.5 T Siemens MAGNETOM Symphony scanner, TR = 11 ms and TE
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= 4.7 ms. Each scan consists of three slices of 230 × 256 voxel, but only the
central slice was used in our analysis. A dose of D = 0.1 mmol/kg body weight
Gd-DTPA was injected at the start of the fifth acquisition using a power injector.
Regions of interest cover the tumor and surrounding normal tissue.

4.2 Results

For the voxelwise and spatially penalized multi-compartment models as well as for
the extended Tofts model the BIC and the average number of selected coefficients
per voxel are listed in Table 1. For all scans the spatial Elastic Net has the lowest
BIC. This indicates that this approach is suitable to sparsely select parameters in
DCE-MR images and still allowing for increased model complexity where needed.

The estimation results of the spatial Elastic Net for the pre- and post-treatment
scans of patient 6 are depicted in Fig. 4. The estimated number of tissue com-
partments q̂ and the inclusion of the AIF (1(v̂p > 0)) are shown separately and
sum up to the total number of compartments. The estimated number of tissue
compartments q̂ ranges between one and four and is two for a large number of
voxels. In the pre-treatment scan, inside the tumor (top of the image), the tissue
is relatively homogeneous (q̂ = 1 and v̂p = 0), whereas in surrounding tissue and
especially at tumor margins the tissue is more heterogeneous (q̂ ≥ 1). In the post-
treatment scan, tumor size is reduced and the model complexity in the shrunk
tumor has increased. From the difference in SSE compared to the extended Tofts
model we find that the maximal benefit of additional compartments is at tumor
margins. Here, the tissue is too heterogeneous to be adequately described by the
extended Tofts model.

For most voxels, the AIF is not selected as predictor. It is selected more
frequently at tissue borders, indicating a relevant amount of vascular space. If
selected, the corresponding estimated vp terms are rather small compared to
contributions of other compartments: the median of non-zero vp estimates ranges
from 0.01 to 0.05 in the different scans. Summarizing, the average number of
plasma and tissue compartments per voxel (q̂+1(v̂p > 0)) in a single scan ranges
from 1.55 to 2.24 depending on the volume of homogeneous tissue, see Table 1.

The spatial Elastic Net estimates provide good fit to the observed CA concen-
tration in different tissue regions. For exemplar voxels inside the tumor, at the
tumor edge and in surrounding tissue the selection of basis functions and the final
curve fits are shown in Fig. 5. Exemplar voxels are taken from the pre-treatment
scan of patient 2, see the Appendix for precise location of the voxels. Parameter
estimates for the entire scan are also shown in the Appendix.
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Figure 4: Results of spatially regularized estimation. Parameter maps for the mid-slice of
patient 6 pre-treatment and post-treatment scans: estimated number of tissue compartments q̂,
estimated inclusion of plasma compartment v̂p and difference in SSE (∆SSE = SSEext.Tofts−
SSEspatial)

5 Summary and Conclusions
Based on a multi-compartment model, we have proposed two penalized ML based
approaches for data driven model choice and parameter estimation in DCE-MRI.
Choosing basis functions based on the contribution of corresponding compart-
ments, both approaches combine the advantages of data driven and model based
approaches and parameters remain interpretable. The spatial Elastic Net which
incorporates the spatial structure intrinsic in an image performed better than the
voxelwise Elastic Net. Due to ”borrowing strength” from neighbouring pixels, the
spatial Elastic Net is more robust compared to the independent voxelwise Elastic
Net. Hence, the spatial Elastic Net provides a sparser solution with similar fit to
the data.

With a simulation study and the analysis of twelve DCE-MRI scans we found
that the spatially penalized multi-compartment model outperforms the commonly
used extended Tofts model as well as the voxelwise Elastic Net. Our results indi-
cate that additional model complexity is needed to adequately describe observed
CTCs, especially at tumor margins and surroundings. As the number of con-
tributing tissue compartments (and the plasma compartment) is estimated per
voxel, important information about the tissue heterogeneity is gained that cannot
be obtained with a priori fixed model architectures.
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Figure 5: Results of spatially regularized estimation: Selection of basis functions and corre-
sponding curve fits for a voxel in normal tissue (21, 20), at the tumor edge (35, 33) and inside
the tumor (51, 41); voxels from the mid-slice of patient 2 pre-treatment scan
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Table 1: Comparison of extended Tofts model and the voxelwise or spatially penalized multi-
compartment model: BIC and average number of compartments per voxel (q̂ + 1(v̂p > 0)) for
simulated image and scans from breast cancer study.

extended Tofts voxelwise spatial
simulation BIC 462,317 438,313 436,423

q̂ + 1(v̂p > 0) 2.00 2.90 2.51
scan 1 BIC 758,745 764,613 717,703

q̂ + 1(v̂p > 0) 2.00 2.22 1.80
scan 2 BIC 619,243 587,659 561,450

q̂ + 1(v̂p > 0) 2.00 1.86 1.53
scan 3 BIC 539,332 535,391 508,484

q̂ + 1(v̂p > 0) 2.00 2.20 1.86
scan 4 BIC 638,952 630,269 610,377

q̂ + 1(v̂p > 0) 2.00 2.26 1.89
scan 5 BIC 296,972 287,248 276,943

q̂ + 1(v̂p > 0) 2.00 2.30 2.05
scan 6 BIC 440,293 428,462 407,239

q̂ + 1(v̂p > 0) 2.00 2.00 1.67
scan 7 BIC 866,187 805,909 781,456

q̂ + v̂p 2.00 1.78 1.59
scan 8 BIC 672,523 618,126 584,098

q̂ + v̂p 2.00 2.00 1.69
scan 9 BIC 855,938 796,163 763,135

q̂ + 1(v̂p > 0) 2.00 2.23 1.77
scan 10 BIC 777,398 704,287 675,509

q̂ + 1(v̂p > 0) 2.00 2.53 2.13
scan 11 BIC 567,411 567,171 534,742

q̂ + 1(v̂p > 0) 2.00 2.35 2.02
scan 12 BIC 582,249 587,292 559,053

q̂ + 1(v̂p > 0) 2.00 2.53 2.24

16



Appendix / Supplementary Material
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Figure 6: Subset of predictors (every fifth predictor is shown). Grey line: Cp(t), black lines:
Ψ1(t), . . . ,Ψq(t)
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Figure 7: Simulated CTCs with underlying parameters vp = 0, kep1
= 0.2, kep2

= 1, kep3
= 4.

q = 1: Ktrans1 = 0.2. q = 2: Ktrans1 = 0.1, Ktrans3 = 2. q = 3: Ktrans1 = 0.07, Ktrans2 = 0.3,
Ktrans3 = 1
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Figure 8: Sketch of simulation design. The simulated image consists of 75× 75 voxels divided
into three main blocks (q = 1, 2, 3). Each main block is split up into a block with vp > 0 or
vp = 0.1.
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Figure 9: Maps of true underlying coefficients Ψk of the simulation study and corresponding
estimated coefficients (spatially regularized)

18



20 40 60 80

10
30

50
70

i

j

●

●

●

Figure 10: Concentration map at a fixed time point C(t10) (patient 2 pre-treatment). Voxels
(21, 20), (35, 33) and (51, 41) are marked.
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Figure 11: Maps of estimated coefficients Ψk, k = 0, . . . , 61 (patient 2 pre-treatment)
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