28,421 research outputs found

    Multi-class SVMs: From Tighter Data-Dependent Generalization Bounds to Novel Algorithms

    Full text link
    This paper studies the generalization performance of multi-class classification algorithms, for which we obtain, for the first time, a data-dependent generalization error bound with a logarithmic dependence on the class size, substantially improving the state-of-the-art linear dependence in the existing data-dependent generalization analysis. The theoretical analysis motivates us to introduce a new multi-class classification machine based on â„“p\ell_p-norm regularization, where the parameter pp controls the complexity of the corresponding bounds. We derive an efficient optimization algorithm based on Fenchel duality theory. Benchmarks on several real-world datasets show that the proposed algorithm can achieve significant accuracy gains over the state of the art

    Semi-supervised Multi-sensor Classification via Consensus-based Multi-View Maximum Entropy Discrimination

    Full text link
    In this paper, we consider multi-sensor classification when there is a large number of unlabeled samples. The problem is formulated under the multi-view learning framework and a Consensus-based Multi-View Maximum Entropy Discrimination (CMV-MED) algorithm is proposed. By iteratively maximizing the stochastic agreement between multiple classifiers on the unlabeled dataset, the algorithm simultaneously learns multiple high accuracy classifiers. We demonstrate that our proposed method can yield improved performance over previous multi-view learning approaches by comparing performance on three real multi-sensor data sets.Comment: 5 pages, 4 figures, Accepted in 40th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 15

    Unsupervised two-class and multi-class support vector machines for abnormal traffic characterization

    Get PDF
    Although measurement-based real-time traffic classification has received considerable research attention, the timing constraints imposed by the high accuracy requirements and the learning phase of the algorithms employed still remain a challenge. In this paper we propose a measurement-based classification framework that exploits unsupervised learning to accurately categorise network anomalies to specific classes. We introduce the combinatorial use of two-class and multi-class unsupervised Support Vector Machines (SVM)s to first distinguish normal from anomalous traffic and to further classify the latter category to individual groups depending on the nature of the anomaly
    • …
    corecore