research

Unsupervised two-class and multi-class support vector machines for abnormal traffic characterization

Abstract

Although measurement-based real-time traffic classification has received considerable research attention, the timing constraints imposed by the high accuracy requirements and the learning phase of the algorithms employed still remain a challenge. In this paper we propose a measurement-based classification framework that exploits unsupervised learning to accurately categorise network anomalies to specific classes. We introduce the combinatorial use of two-class and multi-class unsupervised Support Vector Machines (SVM)s to first distinguish normal from anomalous traffic and to further classify the latter category to individual groups depending on the nature of the anomaly

    Similar works