6 research outputs found

    Balanced Multi-Channel Data Collection in Wireless Sensor Networks

    Get PDF
    Data collection is an essential task in Wireless Sensor Networks (WSNs). In data collection process, the sensor nodes transmit their readings to a common base station called Sink. To avoid a collision, it is necessary to use the appropriate scheduling algorithms for data transmission. On the other hand, multi-channel design is considered as a promising technique to reduce network interference and latency of data collection. This technique allows parallel transmissions on different frequency channels, thus time latency will be reduced. In this paper, we present a new scheduling method for multi-channel WSNs called Balanced Multi Channel Data Collection (Balanced MC-DC) Algorithm. The proposed protocol is based on using both Non-Overlapping Channels (NOC) and Partially Overlapping Channels (POC). It uses a new approach that optimizes the processes of tree construction, channel allocation, transmission scheduling and balancing simultaneously. Extensive simulations confirm the superiority of the proposed algorithm over the existing algorithms in wireless sensor networks

    The Minimum Scheduling Time for Convergecast in Wireless Sensor Networks

    Get PDF
    We study the scheduling problem for data collection from sensor nodes to the sink node in wireless sensor networks, also referred to as the convergecast problem. The convergecast problem in general network topology has been proven to be NP-hard. In this paper, we propose our heuristic algorithm (finding the minimum scheduling time for convergecast (FMSTC)) for general network topology and evaluate the performance by simulation. The results of the simulation showed that the number of time slots to reach the sink node decreased with an increase in the power. We compared the performance of the proposed algorithm to the optimal time slots in a linear network topology. The proposed algorithm for convergecast in a general network topology has 2.27 times more time slots than that of a linear network topology. To the best of our knowledge, the proposed method is the first attempt to apply the optimal algorithm in a linear network topology to a general network topology

    Ordonnancement de l'activité des noeuds dans les réseaux ad hoc et les réseaux de capteurs sans fil

    Get PDF
    National audienceL'efficacité énergétique est une exigence majeure pour les réseaux sans fil où certains noeuds opèrent sur batterie. L'ordonnancement de l'activité des noeuds permet de distinguer périodes actives où la communication radio est possible et périodes inactives où la radio est arrêtée. Cet ordonnancement contribue largement à améliorer l'efficacité énergétique : d'une part en évitant les collisions entre transmissions conflictuelles et donc les retransmissions associées et d'autre part en permettant aux noeuds non concernés par la transmission de dormir pour économiser leur énergie. Parmi les solutions possibles, nous étudierons plus particulièrement le coloriage des noeuds. Après avoir défini le problème et ses différentes déclinaisons, nous donnerons sa complexité et proposerons SERENA, un algorithme de coloriage distribué qui s'adapte à la collecte de données. Nous présenterons OSERENA, l'optimisation de SERENA pour les réseaux denses et son utilisation dans le réseau de capteurs sans fil OCARI. Lorsque les noeuds ont des charges de trafic fortement hétérogènes, il devient plus intéressant d'effectuer une assignation de slots. Disposer d'un accès au médium multicanal et d'un puits multi-interfaces permet de gagner en nombre de slots nécessaires à la collecte de données, de réduire les interférences et d'améliorer la résistance aux perturbations. Nous présenterons une formalisation en ILP (Integer Linear Programming) du problème d'assignation de slots visant à minimiser le nombre de slots en profitant d'un environnement mono ou multicanal et d'un puits mono ou multi-interfaces. Nous donnerons des bornes théoriques sur le nombre optimal de slots dans diverses configurations et divers environnements (mono ou multicanal, puits mono ou multi-interfaces). Nous présenterons MODESA un algorithme centralisé d'allocatoion conjointe de canaux et slots temporels. Nous terminerons par quelques questions ouvertes

    An Adaptive Strategy for an Optimized Collision-Free Slot Assignment in Multichannel Wireless Sensor Networks

    Get PDF
    International audienceConvergecast is the transmission paradigm used by data gathering applications in wireless sensor networks (WSNs). For efficiency reasons, a collision-free slotted medium access is typically used: time slots are assigned to non-conflicting transmitters. Furthermore, in any slot, only the transmitters and the corresponding receivers are awake, the other nodes sleeping in order to save energy. Since a multichannel network increases the throughput available to the application and reduces interference, multichannel slot assignment is an emerging research domain in WSNs. First, we focus on a multichannel time slot assignment that minimizes the data gathering delays. We compute the optimal time needed for a raw data convergecast in various multichannel topologies. Then, we focus on how to adapt such an assignment to dynamic demands of transmissions (e.g., alarms, temporary additional application needs and retransmissions). We formalize the problem using linear programming, and we propose an incremental technique that operates on an optimized primary schedule to provide bonus slots to meet new transmission needs. We propose AMSA, an Adaptive Multichannel Slot Assignment algorithm, which takes advantage of bandwidth spatial reuse, and we evaluate its performances in terms of the number of slots required, slot reuse, throughput and the number of radio state switches

    Multi-channel scheduling algorithms for fast aggregated convergecast in sensor networks

    No full text
    corecore