626 research outputs found

    Data sharing in DHT based P2P systems

    Get PDF
    International audienceThe evolution of peer-to-peer (P2P) systems triggered the building of large scale distributed applications. The main application domain is data sharing across a very large number of highly autonomous participants. Building such data sharing systems is particularly challenging because of the "extreme" characteristics of P2P infrastructures: massive distribution, high churn rate, no global control, potentially untrusted participants... This article focuses on declarative querying support, query optimization and data privacy on a major class of P2P systems, that based on Distributed Hash Table (P2P DHT). The usual approaches and the algorithms used by classic distributed systems and databases forproviding data privacy and querying services are not well suited to P2P DHT systems. A considerable amount of work was required to adapt them for the new challenges such systems present. This paper describes the most important solutions found. It also identies important future research trends in data management in P2P DHT systems

    A read-only distributed hash table

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Distributive Join Strategy Based on Tuple Inversion

    Get PDF
    In this paper, we propose a new direction for distributive join operations. We assume that there will be a scalable distributed computer system in which many computers (processors) are connected through a communication network that can be in a LAN or as part of the Internet with sufficient bandwidth. A relational database is then distributed across this network of processors. However, in our approach, the distribution of the database is very fine-grained and is based on the Distributed Hash Table (DHT) concept. A tuple of a table is assigned to a specific processor by using a fair hash function applied to its key value. For each joinable attribute, an inverted file list is further generated and distributed again based on the DHT. This pre-distribution is done when the tuple enters the system and therefore does not require any distribution of data tuples on the fly when the join is executed. When a join operation request is broadcast, each processor performs a local join and the results are sent back to a query processor which, in turn, merges the join results and returns them to the user. Note that the distribution of the DHT of the inverted file lists can be either pre-processed or distributed on the fly. If the lists are pre-processed and distributed, they have to be maintained. We evaluate our approach by comparing it empirically to two other approaches: the naive join method and the fully distributed join method. The results show a significantly higher performance of our method for a wide range of possible parameter
    corecore