
A READ-ONLY

DISTRIBUTED HASH TABLE

VERDI MARCH

B.Sc (Hons) in Computer Science, University of Indonesia

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2007

DECLARATION

No portion of the work referred to in this thesis has been submitted in support of

an application for another degree or qualification of this or any other university

or other institution of learning.

ii

Abstract

Distributed hash table (DHT) is an infrastructure to support resource discovery

in large distributed system. In DHT, data items are distributed across an overlay

network based on a hash function. This leads to two major issues. Firstly, to

preserve ownership of data items, commercial applications may not allow a node to

proactively store its data items on other nodes. Secondly, data-item distribution

requires all nodes in a DHT overlay to be publicly writable, but some nodes

do not permit the sharing of its storage to external parties due to a different

economical interest. In this thesis, we present a DHT-based resource discovery

scheme without distributing data items called R-DHT (Read-only DHT). We

further extend R-DHT to support multi-attribute queries with our Midas scheme

(Multi-dimensional range queries).

R-DHT is a new DHT abstraction that does not distribute data items across

an overlay network. To map each data item (e.g. a resource, an index to a re-

source, or resource metadata) back onto its resource owner (i.e. physical host), we

virtualize each host into virtual nodes. These nodes are further organized as a

segment-based overlay network with each segment consisting of resources of the

same type. The segment-based overlay also increases R-DHT resiliency to node

failures. Compared to conventional DHT, R-DHT’s overlay has a higher number

of nodes which increases lookup path length and maintenance overhead. To reduce

iii

R-DHT lookup path length, we propose various optimizations, namely routing by

segments and shared finger tables. To reduce the maintenance overhead of overlay

networks, we propose a hierarchical R-DHT which organizes nodes as a two-level

overlay network. The top-level overlay is indexed based on resource types and

constitutes the entry points for resource owners at second-level overlays.

Midas is a scheme to support multi-attribute queries on R-DHT based on d-to-

one mapping. A multi-attribute resource is indexed by a one-dimensional key

which is derived by applying a Hilbert space-filling curve (SFC) to the type of the

resource. The resource is then mapped (i.e. virtualized) onto an R-DHT node. To

retrive query results, a multi-attribute query is transformed into a number of exact

queries using Hilbert SFC. These exact queries are further processed using R-DHT

lookups. To reduce the number of lookup required, we propose two optimizations

to Midas query engine, namely incremental search and search-key elimination.

We evaluate R-DHT and Midas through analytical and simulation analysis. Our

main findings are as follows. Firstly, the lookup path length of each R-DHT lookup

operation is indeed independent of the number of virtual nodes. This demonstrates

that our lookup optimization techniques are applicable to other DHT-based sys-

tems that also virtualize physical hosts into nodes. Secondly, we found that R-

DHT is effective in supporting multi-attribute range queries when the number of

query results is small. Our results also imply that a selective data-item distri-

bution scheme would reduce cost of query processing in R-DHT. Thirdly, by not

distributing data items, DHT is more resilient to node failures. In addition, data

update at source are done locally and thus, data-item inconsistency is avoided.

Overall, R-DHT is effective and efficient for resource indexing and discovery in

large distributed systems with a strong commercial requirement in the ownership

of data items and resource usage.

iv

Acknowledgements

I thank God almighty who works mysteriously and amazingly to make things

happen. I have never had the slightest imagination to pursue a doctoral study,

and yet, His guidance has made me come this far. Throughout these five years, I

also slowly learn to appreciate His constants blessings and love.

To my supervisor, A/P Teo Yong Meng, I express my sincere gratitude for his

advise and guidance throughout my doctoral study. His determined support when

I felt my research was going nowhere is truly inspirational. I learned from him the

importance of defining research problems, how to put solutions and findings into

perspective, a mind set of always looking for both sides of a coin, and technical

writing skill. I also like to express my gratitude to my Ph.D. thesis committee,

Professors Gary Tan Soon Huat, Wong Weng Fai, and Chan Mun Choon.

I acknowledge the contributions of Dr Wang Xianbing to this thesis. Due to

his persistance, we managed to analytically prove the lookup path length of R-

DHT. In addition, the backup-fingers scheme was invented when we discussed

experimental results that are in contrast to theoretical analysis. I am indebted

to Peter Eriksson (KTH, Sweden) who implemented a simulator that I use in

Chapter 3. Dr Bhakti Satyabudhi Stephan Onggo (LUMS, UK) has provided me

his advice regarding simulations and my thesis writing. Hendra Setiawan gave

v

me a crash course on probability theories to help me in performing theoretical

analysis. Professor Seif Haridi (KTH, Sweden), Dr Ali Ghodsi (KTH, Sweden),

and Gabriel Ghinita provided valuable inputs at various stages of my research.

With Dr Lim Hock Beng, I have had some very insightful discussions regarding

my research. I owe a great deal to Tan Wee Yeh, the keeper of Angsana and

Tembusu2 clusters, whom I bugged frequently during my experiments. I thank

Johan Prawira Gozali for sharing with me major works in job scheduling when I

was looking for a research topic. Many thanks to Arief Yudhanto, Djulian Lin,

Fendi Ciuputra Korsen, Gunardi Endro, Hendri Sumilo Santoso, Kong Ming Siem,

and other friends as well for their support.

Finally, I thank my parents who have devoted their greatest support and encour-

agement throughout my tough years in NUS. I would never have completed this

thesis without their constant encouragement especially when my motivation was

at its lowest point. Thank you very much for your caring support.

CONTENTS vi

Contents

Abstract ii

Acknowledgements iv

Contents vi

List of Symbols ix

List of Figures xi

List of Tables xiii

List of Theorems xiv

1 Introduction 1
1.1 P2P Lookup . 2
1.2 Distributed Hash Table (DHT) . 4

1.2.1 Chord . 7
1.2.2 Content-Addressable Network 10
1.2.3 Kademlia . 12

1.3 Multi-Attribute Range Queries on DHT 15
1.3.1 Distributed Inverted Index 17
1.3.2 d-to-d Mapping . 19
1.3.3 d-to-one Mapping . 20

1.4 Motivation . 23
1.5 Objective . 25
1.6 Contributions . 27
1.7 Thesis Overview . 31

2 Read-only DHT: Design and Analysis 33
2.1 Terminologies and Notations . 34
2.2 Overview of R-DHT . 36
2.3 Design . 37

2.3.1 Read-only Mapping . 37
2.3.2 R-Chord . 41
2.3.3 Lookup Optimizations . 44

2.3.3.1 Routing by Segments 48

CONTENTS vii

2.3.3.2 Shared Finger Tables 48
2.3.4 Maintenance of Overlay Graph 49

2.4 Theoretical Analysis . 52
2.4.1 Lookup . 53
2.4.2 Overhead . 57
2.4.3 Cost Comparison . 61

2.5 Simulation Analysis . 62
2.5.1 Lookup Path Length . 63
2.5.2 Resiliency to Simultaneous Failures 65
2.5.3 Time to Correct Overlay . 66
2.5.4 Lookup Performance under Churn 70

2.6 Related Works . 74
2.6.1 Structured P2P with No-Store Scheme 74
2.6.2 Resource Discovery in Computational Grid 75

2.7 Summary . 76

3 Hierarchical R-DHT: Collision Detection and Resolution 79
3.1 Related Work . 80

3.1.1 Varying Frequency of Stabilization 81
3.1.2 Varying Size of Routing Tables 81
3.1.3 Hierarchical DHT . 82

3.2 Design of Hierarchical R-DHT . 84
3.2.1 Collisions of Group Identifiers 86
3.2.2 Collision Detection . 87
3.2.3 Collision Resolution . 90

3.2.3.1 Supernode Initiated 91
3.2.3.2 Node Initiated . 91

3.3 Simulation Analysis . 92
3.3.1 Maintenance Overhead . 93
3.3.2 Extent and Impact of Collisions 96
3.3.3 Efficiency and Effectiveness 99

3.3.3.1 Detection . 99
3.3.3.2 Resolution . 100

3.4 Summary . 101

4 Midas: Multi-Attribute Range Queries 102
4.1 Related Work . 103
4.2 Hilbert Space-Filling Curve . 105

4.2.1 Locality Property . 106
4.2.2 Constructing Hilbert Curve 107

4.3 Design . 111
4.3.1 Multi-Attribute Indexing . 112

4.3.1.1 d-to-one Mapping Scheme 113
4.3.1.2 Resource Type Specification 114
4.3.1.3 Normalization of Attribute Values 116

4.3.2 Query Engine and Optimizations 119

CONTENTS viii

4.4 Performance Evaluation . 124
4.4.1 Efficiency . 125
4.4.2 Cost of Query Processing . 127
4.4.3 Resiliency to Node Failures 133
4.4.4 Query Performance under Churn 136

4.5 Summary . 138

5 Conclusion 140
5.1 Summary . 140
5.2 Future Works . 145

Appendices 149

A Read-Only CAN 149
A.1 Flat R-CAN . 150
A.2 Hierarchical R-CAN . 152

B Selective Data-Item Distribution 154

References 157

LIST OF SYMBOLS ix

List of Symbols

R-DHT

β Ratio of the number of collisions in hierarchical R-DHT with detect &
resolve to the number of collisions in hierarchical R-DHT without detect
& resolve

ξ Stabilization degree of an overlay network

ξn Correctness of n’s finger table

f Finger

h Host

K Number of unique keys in a system

k Key

N Number of hosts

n Node

p Stabilization period

r Resource

Sk Segment prefixed with k

T Average number of unique keys in a host

Th Set of unique keys in host h

V Number of nodes

Midas

a Length parameter that determines the size of query region for the exper-
iments in Chapter 4

C Number of clusters in query region

LIST OF SYMBOLS x

c Cluster is consecutive Hilbert identifiers from c.lo–c.hi

d Number of Dimensions

f−1
Hilbert Function to map a Hilbert identifier to a coordinate

fHilbert Function to map a coordinate to a Hilbert identifier

Hd
l The lth-order Hilbert curve of a d-dimensional space

I Number of intermediate nodes required to locate a responsible node

l Approximation level of a multidimensional space and a Hilbert curve

Q Query region whose Q.lo and Q.hi are its smallest and largest coordinates

q Ordered set of search keys

Qakey Number of available keys

Qcnode Number of Chord nodes responsible for keys

Qskey Number of search keys

R Number of responsible nodes

LIST OF FIGURES xi

List of Figures

1.1 Classification of P2P Lookup Schemes 3
1.2 Chord Ring . 7
1.3 Chord Lookup . 8
1.4 Join Operation in Chord . 10
1.5 Lookup in a 2-Dimensional CAN 11
1.6 Dynamic Partitioning of a 2-Dimensional CAN 13
1.7 Kademlia Tree Consisting of 14 Nodes (m = 4 Bits) 14
1.8 Kademlia Lookup (α = 1 Node) . 16
1.9 Classification of Multi-Attribute Range Query Schemes on DHT . . 18
1.10 Example of Distributed Inverted Index on Chord 19
1.11 Intersecting Intermediate Result Sets 20
1.12 Example of Direct Mapping on 2-dimensional CAN 20
1.13 Hilbert SFC Maps Two-Dimensional Space onto One-Dimensional

Space . 21
1.14 Example of 2-Dimensional Hash on Chord 22

2.1 Host in the Context of Computational Grid 34
2.2 virtualize : hosts → nodes . 35
2.3 Proposed R-DHT Scheme . 36
2.4 Resource Discovery in a Computational Grid 38
2.5 Mapping Keys to Node Identifiers 39
2.6 Virtualization in R-DHT . 40
2.7 R-DHT Node Identifiers . 40
2.8 Virtualizing Host into Nodes . 42
2.9 Chord and R-Chord . 43
2.10 Node Failures and Stale Data Items 45
2.11 The Fingers of Node 2|3 . 46
2.12 Unoptimized R-Chord Lookup . 46
2.13 R-Chord Lookup Exploiting R-DHT Mapping 47
2.14 lookup(k) with and without Routing by Segments 49
2.15 Effect of Shared Finger Tables on Routing 50
2.16 Finger Tables with Backup Fingers 51
2.17 Successor-Stabilization Algorithm 52
2.18 Finger-Correction Algorithm . 53
2.19 Average Lookup Path Length . 64
2.20 Average Lookup Path Length with Failures (N = 25,000 Hosts) . . 67

LIST OF FIGURES xii

2.21 Percentage of Failed Lookups (N = 25,000 Hosts) 68
2.22 Correctness of Overlay ξ . 71

3.1 Two-Level Overlay Consisting of Four Groups 84
3.2 Example of a Lookup in Hierarchical R-DHT 86
3.3 Join Operation . 87
3.4 Collision at the Top-Level Overlay 87
3.5 Collision Detection Algorithm . 88
3.6 Collision Detection Piggybacks Successor Stabilization 89
3.7 Collision Detection for Groups with Several Supernodes 90
3.8 Announce Leave to Preceding and Succeeding Supernodes 91
3.9 Supernode-Initiated Algorithm . 91
3.10 Node-Initiated Algorithm . 92
3.11 Maintenance Overhead of Hierarchical R-Chord 95
3.12 Size of Top-Level Overlay (V = 100, 000 Nodes) 98

4.1 Retrieving Result Set of Resource Indexes with Attribute cpu = P3 104
4.2 SFC on 2-Dimensional Space . 106
4.3 Clusters and Region . 108
4.4 Constructing Hilbert Curve on 2-Dimensional Space 109
4.5 Midas Indexing and Query Processing 111
4.6 Midas Multi-dimensional Indexing 112
4.7 Attributes and Key . 114
4.8 Example of Midas Indexing (d = 2 Dimensions and m = 4 Bits) . . 115
4.9 Dimension Values for Compound Attribute book 116
4.10 Sample XML Document of GLUE Schema 117
4.11 Range Query with Search Attributes cpu and memory 120
4.12 Naive Search Algorithm . 121
4.13 Midas Incremental Search Algorithm 122
4.14 Search-Key Elimination . 123
4.15 Example of Range Query Processing 123
4.16 Four Chord Nodes are Responsible for Twelve Search Keys 129
4.17 Locating Key and Accessing Resource in R-Chord and Chord 132

5.1 Multi-attribute Queries on R-DHT 141
5.2 Exploiting Host Virtualization to Selectively Distribute Data Items 147

A.1 VIDs of Node Identifier 11012 . 150
A.2 Zone Splitting in CAN may Violate Definition A.1 150
A.3 Zone Splitting in Flat R-CAN . 152
A.4 Zone Splitting in Hierarchical R-CAN 153

B.1 Relaxing Node Autonomy . 155
B.2 Lookup within Reserved Segment 156

LIST OF TABLES xiii

List of Tables

2.1 Variables Maintained by Host and Node 35
2.2 Comparison of API in R-DHT with Conventional DHT 41
2.3 Comparison of Chord and R-Chord 62
2.4 Lookup Performance under Churn (N ∼ 25, 000 Hosts) 73
2.5 Comparison of R-DHT with Related Work 76

3.1 Additional Variables Maintained by Node n in a Hierarchical R-DHT 85
3.2 Number of Collisions . 97
3.3 Average Time to Detect a Collision (in Seconds) 99
3.4 Ratio of Number of Collisions (β) 100
3.5 Average Number of Nodes Affected by a Collision 100

4.1 Comparison of Multi-attribute Range Query Processing 105
4.2 Resource Type Specification for Compute Resources based on GLUE

Schema . 118
4.3 Performance of Query Processing in Naive Scheme vs Midas 126
4.4 Query Cost of Midas . 128
4.5 Qcnode . 129
4.6 Average Number of Lookups per Query (based on Table 4.4b) . . . 130
4.7 Average Number of Intermediate Nodes per Lookup (based on Ta-

ble 4.4b) . 131
4.8 Percentage of Keys Retrieved under Simultaneous Node Failures . . 134
4.8 Percentage of Keys Retrieved under Simultaneous Node Failures . . 135
4.9 Percentage of Keys Retrieved under Churn (N ∼ 25, 000 Hosts) . . 137

LIST OF TABLES xiv

List of Theorems

Definition 2.1 Resource Type . 34
Definition 2.2 Host . 34
Definition 2.3 Node . 34
Definition 4.1 Key Derived from Hilbert SFC 113
Definition 4.2 Query Region . 119
Definition A.1 R-CAN VID . 149

Property 4.1 Refinement of Hilbert Cell . 109
Property 4.2 Bit-Length of Dimension . 110
Property 4.3 Bit-Length of Hilbert Codes 110

Lemma 2.1 Probability of a Host to own a Key 54
Lemma 2.2 Lookup Path Length of Routing by Segments 55

Theorem 2.1 Lookup Path Length in Chord 53
Theorem 2.2 Lookup Path Length in R-Chord 56
Theorem 2.3 Cost to Join Overlay . 57
Theorem 2.4 Number of Fingers Maintained by Host in R-Chord 58
Theorem 2.5 Cost of Stabilizations . 58
Theorem 2.6 Finger Flexibility . 59
Theorem 2.7 Cost to Add Key . 60
Theorem 2.8 Number of Replicas . 60
Theorem A.1 Zone Splitting in Flat R-CAN 151

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The advance of internetworking has lead to initiatives to achieve the sharing and

collaboration of resources across geographically dispersed locations. One popular

initiative is peer-to-peer-based systems. Peer-to-peer (P2P) is an architecture for

building large distributed systems that facilitate resource sharing among nodes

(peers) from different administrative domains, where nodes are organized as an

overlay network on top of existing network infrastructure (e.g. the TCP/IP net-

work). The main characteristics of P2P are (i) every node can be a resource

provider (server) and a resource consumer (client), and (ii) the overlay network

are self-organizing with minimum manual configuration [10, 18, 100, 112].

P2P has been specifically applied for file-sharing applications [6]. However, the

popularity of P2P paradigm has lead to its adoption by other types of applications

such as information retrieval [105, 109, 127, 135, 146], filesystems [38, 39, 42, 46,

66, 81, 83, 104], database [70, 111], content delivery [34, 41, 48, 73, 82, 88, 125],

and communication and messaging systems [3, 11, 12, 13, 102]. Recently, P2P has

also been proposed to support resource discovery in computational grid [27, 28,

CHAPTER 1. INTRODUCTION 2

71, 91, 132, 145].

A key service in P2P is an effective and efficient resource discovery service. Ef-

fective means users should successfully find available resources with high result

guarantee, while efficient means resource discovery processes are subjected to per-

formance constraints such as minimum number of hops or minimum network traf-

fic. As a P2P system is comprised of peer nodes from different administrative

domains, an important design consideration of a resource discovery scheme is to

address the problem of resource ownership and conflicting self-interest among ad-

ministrative domains.

In this thesis, we present a resource discovery scheme based on read-only DHT

(R-DHT). The remainder of this chapter is organized as follows. First, we review

existing P2P lookup schemes in Section 1.1 and introduce a class of decentralized

P2P lookup schemes called DHT in Section 1.2. In Section 1.3, we discuss how

DHT supports a type of complex queries called multi-attribute range queries.

Then, we highlight the problem of data-item distribution in Section 1.4. Next,

we present the objective of this thesis and our contributions in Section 1.5–1.6.

Finally, we describe the organization of this thesis in Section 1.7.

1.1 P2P Lookup

Based on the architecture, we classify P2P lookup schemes as centralized and

decentralized (Figure 1.1).

Centralized schemes such as Napster [8] employ a directory server to index all

resources in the overlay network. This leads to high result guarantee and efficiency

since each lookup is forwarded only to the directory server. However, for large

systems, a central authority needs a significant investment in providing a powerful

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Classification of P2P Lookup Schemes

directory server to handle a high number of requests. The directory server is also a

potential single point of failure due to technical reasons such as hardware failure,

and non-technical reasons such as political or legal actions. A well-publicized

example is the termination of Napster service in July 2001 due to legal actions.

Decentralized schemes minimize the reliance on a central entity by distributing

the lookup processing among nodes in the overlay. Based on the overlay topology,

decentralized schemes are further classified as unstructured P2P and structured

P2P.

Unstructured P2P such as Gnutella [6] organizes nodes as a random overlay graph.

In the earlier unstructured P2P, each node indexes only its own resources and a

lookup floods the overlay: each node forwards an incoming lookup to all its neigh-

bors. However, flooding limits scalability because in a P2P system consisting of

CHAPTER 1. INTRODUCTION 4

N nodes, the lookup complexity, in terms of the number of messages, is O(N2)

[98, 121]. Hence, a high volume of network traffic is generated. To address this

scalability issue, various approaches to limit search scope are proposed, including

heuristic-based routing [15, 37, 79, 94, 141], distributed index [33, 35, 40], su-

perpeer architecture [142], and clustering of peers [33, 114]. Though improving

lookup scalability, limiting search scope leads to a lower result guarantee: a lookup

returns a false negative answer when it is terminated before successfully locating

resources. Thus, trying to efficiently achieve a high result guarantee remains a

challenging problem [35, 138].

Structured P2P, also known as distributed hash table (DHT) [62, 69, 89, 117], is

another decentralized lookup scheme that aims to provide a scalable lookup service

with high result guarantee. We review the mechanism of DHT in Section 1.2 and

how DHT supports complex queries in Section 1.3.

1.2 Distributed Hash Table (DHT)

DHT, as with a hash-table data structure, provides an interface to retrieve a

key-value pair. A key is an identifier assigned to a resource; traditionally this

key is a hash value associated with the resource. A value is an object to be

stored into DHT; this could be the shared resource itself (e.g. a file), an index

(pointer) to a resource, or a resource metadata. An example of a key-value pair

is 〈SHA1(file name), http://peer-id/file〉, where the key is the SHA1 hash

of the file name and the value is the address (location) of the file. DHT works in

a similar way as hash tables. Whereas a hash table assigns every key-value pair

onto a bucket, DHT assigns every key-value pair onto a node.

There are three main concepts in DHT: key-to-node mapping, data-item distribu-

tion, and structured overlay networks.

CHAPTER 1. INTRODUCTION 5

Key-to-Node Mapping Assuming that keys and nodes share the same identifier

space, DHT maps key k to node n where n is the closest node to k in the

identifier space; we refer to n as the responsible node of k. We use the

term one-dimensional DHT and d-dimensional DHT to refer to DHT that

use a one-dimensional identifier space and a d-dimensional identifier space,

respectively.

Data-Item Distribution All key-value pairs (i.e. data items) whose key equals

to k are stored at node n regardless of who owns these key-value pairs. To

improve the resilience of lookups when the responsible node fails, the key-

value pairs can also be replicated in a number of neighbors of n. However,

the replication needs to consider application-specific requirements such as

consistency among replicas, degree of replication, and overhead of replication

[42, 54, 87, 113, 120].

Structured Overlay Network In DHT, nodes are organized as a structured

overlay network with the purpose of striking a balance between routing per-

formance and overhead of maintaining routing states. There are two impor-

tant characteristics of a structured overlay network:

1. Topology

A structured overlay network resembles a graph with a certain topology

such as a ring [123, 133], a torus [116], or a tree [14, 99].

2. Ordering of nodes

The position of a node in a structured overlay network is determined

by the node identifier.

Compared to unstructured P2P, DHT is perceived to offer a better lookup per-

formance in terms of results guarantee and lookup path length [93]. Due to the

key-to-node mapping, finding a key-value pair equals to locating a node respon-

CHAPTER 1. INTRODUCTION 6

sible for the key. This increases result guarantee (i.e. a lower number of false

negative answers) because it avoids the termination of lookups before existing

keys are found1. By exploiting its structured overlay, DHT locates the responsible

node in a shorter and bounded number of hops (i.e. the lookup path length).

Existing DHT implementations adopt all the three DHT main concepts. Two of

these concepts, i.e. key-to-node mapping and structured overlay network, can be

implemented differently among DHT implementations. On the other hand, data-

item distribution is implemented in existing DHT by providing a store operation

[43, 120]. As an illustration of how DHT concepts are implemented, we present

three well-known DHT examples, namely Chord [133], Content-Addressable Net-

work (CAN) [116], and Kademlia [99].

1. Chord, a one-dimensional DHT, is the basis for implementing our proposed

read-only DHT scheme in Chapter 2–4.

2. CAN, a d-dimensional DHT, is used in an alternative implementation of our

proposed scheme in Appendix A.

3. Kademlia is another one-dimensional DHT with a different key-to-node map-

ping function and structured overlay topology compared to Chord.

For each of these examples, we first elaborate on its overlay topology and key-

to-node mapping function. We also highlight that each of the presented example

distributes data items. Lastly, we discuss the process of looking up for a key (i.e.

the basic DHT lookup operation) and the construction of overlay network.

1In contrast to DHT, the result guarantee in unstructured P2P depends on the popularity
of key-value pairs. Lookup for popular key-value pairs, i.e. highly replicated and frequently
requested, have a higher probability to return a correct answer compared to lookup for less
popular key-value pairs [93].

CHAPTER 1. INTRODUCTION 7

1.2.1 Chord

Chord is a DHT implementation that supports O(log N)-hops lookup path length

and O(log N) routing states per node, where N denotes the total number of nodes

[133] . Chord organizes nodes as a ring that represents an m-bit one-dimensional

circular identifier space, and as a consequence, all arithmetic are modulo 2m.

To form a ring overlay, each node n maintains two pointers to its immediate

neighbors (Figure 1.2). The successor pointer points to successor(n), i.e. the

immediate neighbor of n clockwise. Similarly, the predecessor pointer points to

predecessor(n), the immediate neighbor of n counter clockwise.

Figure 1.2: Chord Ring

Chord maps key k to successor(k), the first node whose identifier is equal to or

greater than k in the identifier space (Figure 1.3a). Thus, node n is responsi-

ble for keys in the range of (predecessor(n), n], i.e. keys that are greater than

predecessor(n) but smaller than or equal than n. For example, node 32 is respon-

sible for all keys in (21, 32]. All key-value pairs whose key equals to k are then

stored on successor(k) regardless of who owns the key-value pairs (i.e. data-item

distribution).

Finding key k implies that we route a request to successor(k). The simplest

approach for this operation, as illustrated in Figure 1.3b, is to propagate a re-

CHAPTER 1. INTRODUCTION 8

(a) Map and Distribute Keys to
Nodes

(b) Traverse the Ring to Find
successor(54)

(c) The Fingers of Node 8

(d) find successor(54) Utiliz-
ing Finger Tables

Figure 1.3: Chord Lookup

CHAPTER 1. INTRODUCTION 9

quest along the Chord ring in a clockwise direction until the request arrives at

successor(k). However, this approach is not scalable as its complexity is O(N),

where N denotes the number of nodes in the ring [133].

To speed-up the process of finding successor(k), each node n maintains a finger

table of m entries (Figure 1.3c). Each entry in the finger table is also called a finger.

The ith finger of n is denoted as n.finger[i] and points to successor(n + 2i−1),

where 1 ≤ i ≤ m. Note that the 1st finger is also the successor pointer while the

largest finger divides the circular identifier space into two halves. When N < 2m,

the finger table consists of only O(log N) unique entries.

By utilizing finger tables, Chord locates successor(k) in O(log N) hops with high

probability [133]. Intuitively, the process resembles a binary search where each

step halves the distance to successor(k). Each node n forwards a request to the

nearest known preceding node of k. This is repeated until the request arrives

at predecessor(k), the node whose identifier precedes k, which will forward the

request to successor(k). Figure 1.3d shows an example of finding successor(54)

initiated by node 8. Node 8 forwards the request to its 6th finger which points to

node 48. Node 48 is the predecessor of key 54 because its 1st finger points to node

56 and 48 < 54 ≤ 56. Thus, node 48 will forward the request to node 56.

Figure 1.4 illustrates the construction of a Chord ring. A new node n joins a Chord

ring by locating its own successor. Then, n inserts itself between successor(n) and

the predecessor of successor(n), illustrated in Figure 1.4a. The key-value pairs

stored on successor(n), whose key is less than or equal to n, is migrated to node n

(Figure 1.4b). Because the join operation invalidates the ring overlay, every node

performs periodic stabilizations to correct its successor and predecessor pointers

(Figure 1.4c), and its fingers.

CHAPTER 1. INTRODUCTION 10

finger-correction mechanism to correct its successor and predecessor pointers (Fig-

ure 1.4c).

(a) Insert Node 25 (b) Migrate Key 22 from
Node 32 to Node 25

(c) Correct Successor and Pre-
decessor Pointers

Figure 1.4: Join Operation in Chord

1.2.2 Content-Addressable Network

CAN is d-dimensional DHT that supports O(n1/d)-hops lookup path length and

O(d) routing states per node, where N denotes the total number of nodes [116].

The design of CAN is based on a d-dimensional Cartesian coordinate space on a d-

torus. The coordinate space is partitioned into zones and every node is responsible

for a zone. Each node is also assigned a virtual identifier (VID) that reflects

its position in the coordinate space. To facilitate routing (i.e. lookups) , a node

maintains pointers to its adjacent neighbors. For a d-dimensional coordinate space

CHAPTER 1. INTRODUCTION 11

partitioned into N equal zones, every node maintains 2d neighbors. Figure 1.5

illustrates an example of 2-dimensional CAN consisting of six nodes and an 8× 8

coordinate space. Node E, whose VID is 101, is responsible for zone [6–8, 0–4]

where the lower-left Cartesian point (6, 0) and the upper-right Cartesian point (8,

4) are the lowest and highest coordinates in this zone, respectively.

Figure 1.5: Lookup in a 2-Dimensional CAN

CAN maps key k to point p within a zone. As in Chord, CAN also adopts data-

item distribution where the key-value pair whose key equals to k is stored to the

node responsible for the zone. Thus, finding a key implies locating the zone that

contains point p. Intuitively, CAN routes a request to a destination zone by using a

straight line path from the source to the destination. Each node forwards a request

to its neighbor whose coordinate is the closest to the destination coordinate. For

a d-dimensional coordinate space divided into N equal zones, the lookup path

length is O(n1/d) [116]. Figure 1.5 shows a lookup for a key mapped to Cartesian

point (7, 3). Initiated by node C, the lookup is routed to node E as its zone, [6–8,

0–4], contains the requested point.

To join a CAN coordinate space, a new node n randomly chooses a point p and

locates zone z that contains p. Then, z is split into two child zones along a

particular dimension based on a well-defined ordering. For instance, in a two-

CHAPTER 1. INTRODUCTION 12

dimensional CAN, a zone is first split along the x axis followed by the y axis.

Node e, which was responsible for z, will take over the lower child zone along the

split dimension, while the new node n is responsible for the higher child zone.

To properly reflect their new position, the VIDs of both nodes are updated by

concatenating the original VID of e with 0 (if the node in the lower child zone) or

1 (if the node is in the higher child zone).

Figure 1.6 illustrates the construction of a 2-dimensional CAN consisting of six

nodes. A binary string in parentheses denotes a node VID. Initially, the first node

A is responsible for the whole coordinate space, i.e. [0–8, 0–8], and its VID is

an empty-string (Figure 1.6a). As node B arrives (Figure 1.6b), zone [0–8, 0–8]

is split along the x axis into two child zones: [0–4, 0–8] and [4–8, 0–8], which

corresponds to the lower and higher zone, respectively, along the x axis. Node A

will be responsible for the lower child zone and therefore, its new VID is 0, which

is the concatenation of A’s original VID and 0. Meanwhile, the new node B is

responsible for the higher child zone and its VID will be 1. Figure 1.6c shows

another node C arrives and further splits zone [4–8, 0–8]. Because zone [4–8, 0–8]

is the result of a previous splitting along the x axis, this zone is now split along the

y axis, which results in [4–8, 0–4], i.e. the lower child zone along the y axis, and

[4–8, 4–8], i.e. the higher child zone along the y axis. Node B will be taking over

the lower child zone and its new VID will be 10. The new node C is responsible

for the higher child zone and therefore, its VID will be 11. The zone splitting

continues as more nodes join (Figure 1.6d–1.6f).

1.2.3 Kademlia

Assuming an m-bit identifier space, Kademlia supports O(log N)-hops lookup path

length and O(κm) routing states per node, where N denotes the total number of

nodes and κ denotes a coefficient for routing-states redundancy [99]. Kademlia

CHAPTER 1. INTRODUCTION 13

(a) Node A Occupies [0–8, 0–
8]

(b) Node B Splits [0–8, 0–8]
along x Axis into [0–4, 0–8]
and [4–8, 0–8]

(c) Node C Splits [4–8, 0–8]
along y Axis into [4–8, 0–4]
and [4–8, 4–8]

(d) Node D Splits [4–8, 4–8]
along x Axis into [4–6, 4–8]
and [6–8, 4–8]

(e) Node E Splits [4–8, 0–4]
along x Axis into [4–6, 0–4]
and [6–8, 0–4]

(f) Node F Splits [6–8, 4–8]
along y Axis into [6–8, 4–6]
and [6–8, 6–8]

Figure 1.6: Dynamic Partitioning of a 2-Dimensional CAN

CHAPTER 1. INTRODUCTION 14

organizes nodes as a prefix-based binary tree where each node is a leaf of the tree.

The position of a node is determined by the shortest unique prefix of the node

identifier. Figure 1.7 illustrates the position of node 5 (01012) in a Kademlia tree,

assuming a 4-bit identifier space.

Figure 1.7: Kademlia Tree Consisting of 14 Nodes (m = 4 Bits)

To facilitate the routing of lookup requests, each node maintains a routing table

consisting of O(m) buckets where each bucket consists of O(κ) pointers. First,

node n divides the tree into m subtrees such that the ith subtree consists of O(N/2i)

nodes with the same (i− 1)-bit prefix as n, where 1 ≤ i ≤ m and N denotes the

number of nodes. The ith subtree is higher than the jth subtree if i < j. Thus, the

1st subtree is also called the highest subtree, while the mth subtree is the lowest

subtree. For each subtree, node n maintains a bucket consisting of pointers to

O(κ) nodes in the subtree. Figure 1.7 illustrates the routing states maintained by

node 5. The node partitions the binary tree into four subtrees. The 1st subtree

consists of nodes with prefix 1, which amount to (nearly) half of the tree. The

remaining three subtrees consists of nodes with prefix 0, 01, and 010, respectively.

Kademlia maps key k to node n whose identifier is the closest to k. The distance

between k and n is defined as d(k, n) = k ⊕ n where ⊕ is an XOR operator and

the value of d(k, n) is interpreted as an integer. Then, key-value pairs whose key

CHAPTER 1. INTRODUCTION 15

equals to k are distributed to n. To find key k, each node forwards a lookup

request to the lowest subtree that contains k, i.e. a subtree that has the same

longest common prefix as k. This is repeated until the request arrives at the

node closest to k. In an N -nodes tree, the lookup complexity is O(log N) hops

and the reason is similar to Chord: every routing step halves the distance to the

destination. Kademlia reduces the turnaround time of lookups by exploiting its

κ-bucket routing tables. When forwarding a request to a subtree, the request is

concurrently send to α (≤ κ) nodes in the subtree.

Figure 1.8a illustrates a lookup for key 14 (11102) initiated by node 5 (01012). The

key is mapped to node 15 where d(14, 15) = 1 (00012). Because key 14 and node

5 do not share a common prefix, node 5 forwards the request to any node in the

1st subtree (Figure 1.8a). Assuming that the request arrives at node 12 (11002),

node 12 further forwards the request to its 3rd subtree which contains only node 15

(Figure 1.8b). At node 15 (11112), the lookup request will be terminated because

the distance between k and any node in node 15’s lowest subtrees is larger than

d(14, 15) (Figure 1.8c).

The construction of a Kademlia tree is straightforward. A new node n first locates

another node n′ closest to it. Then, n probes and builds its m subtrees through

node n′. In addition, every time n receives a request, it adds the sender of the

request into the appropriate bucket. The replacement policy will ensure that a

bucket contains pointers to stable nodes (i.e. nodes with longer uptime).

1.3 Multi-Attribute Range Queries on DHT

The DHT lookup operation, presented in the previous section, offers high results

guarantee and short lookup path length for single-attribute exact queries [93].

This may suffice the needs of some applications such as CFS [42] and POST [102].

CHAPTER 1. INTRODUCTION 16

(a) Node 5 Initiates a Lookup for Key 14 (11102)

(b) Node 12 Processes the Lookup

(c) Node 15 Terminates the Lookup

Figure 1.8: Kademlia Lookup (α = 1 Node)

CHAPTER 1. INTRODUCTION 17

However, applications such as computational grid deal with resources described

by many attributes [5, 7]. Users of such applications needs to find resources that

match a multi-attribute range query. To fulfill the need of such applications, DHT

must support not only single-attribute exact queries (i.e. the basic DHT lookup

operation), but also multi-attribute range queries.

A multi-attribute range query is a query that consist of multiple search attributes.

Each search attribute can be constrained by a range of values using relational op-

erators <, ≤, =, >, and ≤. An example of such queries is to find compute resources

whose cpu = P3 and 1 GB ≤ memory ≤ 2 GB. A special case of multi-attribute

range queries is multi-attribute exact queries where each attribute is equal to a

specific value. An example of a multi-attribute exact query is to find compute

resources whose cpu = P3 and memory = 1 GB. Supporting multi-attribute range

queries is very well researched in other fields such as database [49] and information

retrieval [21]. This thesis focuses on multi-attribute range queries on DHT.

As illustrated in Figure 1.9, we classify multi-attribute range query processing on

DHT into three categories, namely distributed inverted index, d-to-d mapping,

and d-to-one mapping. Distributed inverted index and d-to-one mapping scheme

are applicable to both one-dimensional DHT [99, 123, 133, 144] and d-dimensional

DHT [116], whereas d-to-d mapping is applicable to d-dimensional DHT only. In

Chapter 1.3.1–1.3.3, we discuss the indexing scheme and query-processing scheme

used in each of the categories.

1.3.1 Distributed Inverted Index

For every resource that is described by d attributes, distributed inverted index

assigns d keys to the resource, i.e. one key per attribute. To facilitate range

queries, each attribute is hashed into a key using a locality-preserving hash func-

CHAPTER 1. INTRODUCTION 18

Figure 1.9: Classification of Multi-Attribute Range Query Schemes on DHT

tion [19, 28]; this ensures that consecutive attributes are hashed to consecutive

keys. Examples of DHT-based distributed inverted index are MAAN [28], CANDy

[24], n-Gram Indexing [67], KSS [56], and MLP [129]. Figure 1.10 illustrates the

indexing of a compute resource R with two attributes, cpu = P3 and memory = 1

GB. Based on these attributes, we assign two key-value pairs to the resource, one

with key kcpu = hash(P3) and the other with key kmemory = hash(1GB). Then,

we store the two key-value pairs to the underlying DHT.

There are two main strategies for processing a d-attribute range query. The first

strategy uses O(d) DHT lookups; one lookup (i.e. the selection operator, σ, in

relational algebra) for each attribute. The result sets of these lookups need to be

intersected (i.e. operator ∩) to produce a final result set. This can be performed at

the query initiator [28] or by pipelining intermediate result sets through a number

of nodes [24, 56, 129], as illustrated in Figure 1.11. The second strategy requires

CHAPTER 1. INTRODUCTION 19

Figure 1.10: Example of Distributed Inverted Index on Chord

only O(1) lookup to obtain the final result set. Assuming that each key-value pair

also includes the complete attributes of the resource (value), the intersection can

be performed only once.

1.3.2 d-to-d Mapping

d-to-d mapping such as pSearch [135], MURK [50], and 2CAN [16], maps each

d-attribute resource onto a point in a d-dimensional space. Figure 1.12 illustrates

a compute resource with cpu = P3 and memory = 1 GB is mapped to point (P3,

1 GB) in a 2-dimensional CAN. The x-axis and y-axis of the coordinate space

correspond to attribute cpu and memory, respectively.

In d-to-d mapping, a d-attribute range query can be visualized as a region in the

coordinate space. For example, the shaded rectangle in Figure 1.12 represents a

query for resources with any type of cpu and 256 ≤ memory ≤ 768. The basic

concept in processing a query involves two stages. First, a request is routed to

any point in the query region. On reaching the initial point, the request is further

flooded to the remaining points in the query region.

CHAPTER 1. INTRODUCTION 20

(a) At Query Initiator

(b) At Intermediate Nodes

Figure 1.11: Intersecting Intermediate Result Sets

Figure 1.12: Example of Direct Mapping on 2-dimensional CAN

1.3.3 d-to-one Mapping

d-to-one mapping maps a d-attribute resource onto a point (i.e. a key) in a one-

dimensional identifier space. Each d-attribute resource is assigned with a key

CHAPTER 1. INTRODUCTION 21

drawn from a one-dimensional identifier space. The key is derived by hashing the

d-attribute resource using a locality-preserving function, i.e. the d-to-one mapping

function. The resulted key (and key-value pair) is then stored on the underlying

DHT. Compared to d-to-d mapping, d-to-one mapping can use one-dimensional

DHT (e.g. Chord [133]) as the underlying DHT, as well as d-dimensional DHT

(e.g. CAN [116]). Examples of query processing schemes on DHT that are based

on d-to-one are Squid [127], SCRAP [50], ZNet [131], CISS [86], and CONE [16].

With the exception of CONE, all the above examples use space-filling curve (SFC)

as the hash function. Figure 1.13 shows an example of Hilbert SFC [124] that maps

each two-dimensional coordinate point onto an identifier, e.g. coordinate (3, 3) is

mapped onto identifier 10.

Figure 1.13: Hilbert SFC Maps Two-Dimensional Space onto One-Dimensional
Space

Figure 1.14 illustrates the indexing of resources with two attributes. Each resource

corresponds to a point in the 2-dimensional attribute space, and each point is

further hashed into a key (Figure 1.14a). Using Hilbert curve, (cpu = P3, memory

= 1 GB) and (cpu = sparc, memory = 4 GB) are assigned key 3 and key 10,

respectively. Since each key is one-dimensional, it can be mapped directly to

one-dimensional DHT such as Chord (Figure 1.14b).

Similar to d-to-d mapping, a d-attribute range query can be visualized as a re-

CHAPTER 1. INTRODUCTION 22

(a) Map Points in 2-Dimensional Attribute Space to Keys in
1-Dimensional Identifier Space

(b) Map Keys to Chord
Nodes

Figure 1.14: Example of 2-Dimensional Hash on Chord

gion in the d-dimensional attribute space. However, the difference between d-to-d

mapping and d-to-one mapping is in the query processing. In d-to-one mapping,

we apply the d-to-one mapping function to the query region to produce a number

of search keys. A naive way of searching is to issue a lookup for each search key.

To reduce the number of lookups initiated, query processing is optimized by ex-

ploiting the facts that (i) some search keys do not represent available resources,

and (ii) several search keys are mapped onto the same DHT node.

CHAPTER 1. INTRODUCTION 23

1.4 Motivation

Existing DHT distribute data items where key-value pairs are proactively dis-

tributed by their owner across the overlay network. As each DHT node stores

its key-value pair (i.e. data item) to a responsible node which is determined by

a key-to-node mapping function, data items from many nodes are aggregated in

one responsible node. To exploit this property, various performance optimizations

are proposed, including load balancing schemes [57, 58, 78], replication schemes

to achieve high-availability [42, 54, 81, 83, 87], and data aggregation scheme to

support multi-attribute range queries (see Section 1.3).

Though facilitating many performance optimizations in DHT, data-item distribu-

tion also reduces the autonomy (i.e. control) of nodes in placing their key-value

pairs [44].

1. Node n has no control on where its key-value pairs will be stored because:

(a) A key-to-node mapping function considers only the distance between

keys and nodes in the identifier space.

(b) A key can be remapped due to a new node as illustrated in Figure 1.4b.

Hence, node n perceives its key-value pairs to be distributed to random

nodes.

2. To join a DHT-based system, node n must make provision to store key-

value pairs belonging to other nodes. However, n has limited control on the

number of key-value pairs to store because:

(a) The number of keys mapped to n is affected by n’s neighbors (e.g.

predecessor(n) in Chord).

(b) The number of key-value pairs with the same key (i.e. resources of

the same type) depends on the popularity of the resource type; this is

CHAPTER 1. INTRODUCTION 24

beyond the control of n.

The limited node autonomy potentially hinders the widespread adoption of DHT

by commercial entities. In large distributed systems, nodes can be managed by

different administrative domains, e.g. different companies, different research in-

stitutes, etc. This has been observed in computational grid [47, 80] as well as

earlier generations of distributed systems such as file-sharing P2P [6] and world

wide web (WWW). In such applications, distributing data items among different

administrative domains (in particular, different commercial entities) leads to two

major issues:

Ownership of Data Items Commercial application requirements may not al-

low a node to proactively store its data items (even if data items are just

pointers to a resource) on other nodes. Firstly, the node is required to en-

sure that it is the sole provider of its own data items. As an example, a web

site may not allow its contents to be hosted or even directly linked by other

web sites which include search engines, to prevent customers being drawn

away from the originating web site [107, 108, 118]. Secondly, a node may

restrict distributing its data items to prevent the misuse of its data items

[55, 59, 60].

Though a node can encrypt its key-value pairs before storing them to other

nodes, we argue that encryption addresses privacy issue instead of the own-

ership issue. The privacy issue is concerned with ensuring that data items

are not accessible to illegitimate users and this is addressed by encrypting

data items. On the other hand, in the case of ownership issue, data items

are already publicly accessible.

Conflicting Self-Interest among Administrative Domains Data-item distri-

bution requires all nodes in a DHT overlay to be publicly writable. However,

CHAPTER 1. INTRODUCTION 25

this may not happen when nodes do not permit the sharing of its storage

resources to external parties due to a different economical interest. Firstly,

nodes want to protect their investment in their storage infrastructure by not

storing data items belonging to other nodes. Secondly, individual node may

limit the amount of storage it offers. However, limiting the amount of stor-

age reduces result guarantee if the total amount of storage in DHT becomes

smaller than the total number of key-value pairs.

In addition to the problem in enforcing storage policies, nodes also face a

challenge where their infrastructure is used by customers of other parties

[110, 130]. As an example, when a node stores many data items belonging

to other parties, the node experiences an increased usage of its network

bandwidth and computing powers due to processing a high number of lookup

requests for data items.

The above two issues can be addressed by not distributing data items. However, by

design, DHT assumes that data items can be distributed across overlay networks.

1.5 Objective

User requirements may dictate P2P systems to provide an effective and efficient

lookup service without distributing data items. In this thesis, we investigate

a DHT-based approach without distributing data items and with supports for

multi-attribute range queries. The proposed scheme consists of two main parts:

R-DHT (Read-only DHT) and Midas (Multi-dimensional range queries). R-

DHT serves as the basic infrastructure to support the DHT lookup operations

(i.e. single-attribute exact queries), and Midas adds supports for multi-attribute

range queries on R-DHT. As an example, we apply our proposed scheme to support

decentralized resource indexing and discovery in large computational grids [47, 80].

CHAPTER 1. INTRODUCTION 26

R-DHT is a class of distributed hash tables where a node allows “read-only”

accesses to its key-value pairs, but does not allow key-value pairs belonging to

other nodes to be written (mapped) on it. The design criteria for R-DHT include:

1. Support for DHT-style lookup.

R-DHT must support the flat naming scheme in order to provide the hash

table abstraction of locating data items. The lookup operation of R-DHT

requires users to specify only the key of requested data items.

2. Effective and efficient lookup performance.

The result guarantee and the lookup path length of R-DHT must not be

worse than conventional DHT.

3. Lookup resiliency to node failures.

R-DHT must be resilient to node failures even when resources by nature

cannot be replicated. As an example, in a computational grid, resources are

not replicable. However, there are multiple resource instances, shared by

different administrative domains, with the same resource type, and finding

a subset of these resources is sufficient. These properties are exploited to

increase lookup resiliency in R-DHT.

In this thesis, we do not focus on “availability” in which resources are repli-

cated so that they can be located even if their master copy ceases to exist.

Similar to DHT, resource replications can be introduced in R-DHT to in-

crease resource availability.

Midas is a scheme to support multiple-attribute range queries on R-DHT. Midas

indexes multi-attribute resources by mapping each of the resources onto an R-

DHT node. In this thesis, we focus on resources whose description conforms to

a well-defined schema such as GLUE schema [5]. Midas processes multi-attribute

CHAPTER 1. INTRODUCTION 27

range queries using one or more R-DHT lookup operations. The design criteria of

Midas include:

1. Efficient resource indexing.

To reduce the overhead of indexing resources, each multi-attribute resource

is assigned only one key so that the resource is mapped onto one R-DHT

node only. In addition, the indexing exploits locality where resources with

similar attributes are mapped to R-DHT nodes that are close in the overlay

network.

2. Efficient query processing.

Midas processes a multi-attribute range queries by invoking one or more R-

DHT lookup operations. The number of lookup operations and the number

of intermediate hops per lookup must be minimized.

3. Support for one-dimensional overlay network.

The majority of existing DHT implementations are one-dimensional DHT

[99, 123, 133, 144]. Therefore, Midas must support one-dimensional R-

DHT (e.g. Chord-based R-DHT) as the underlying DHT, in addition to

d-dimensional R-DHT (e.g. CAN-based R-DHT).

1.6 Contributions

Our three main contributions are the R-DHT approach, hierarchical R-DHT, and

multi-attribute range queries on R-DHT.

R-DHT Approach

Our proposed scheme enables DHT to map keys to nodes without distributing

data items [97, 136]. The read-only mapping scheme in R-DHT virtualizes a host

(i.e. a physical entity that shares resources) into nodes : one node is associated with

CHAPTER 1. INTRODUCTION 28

each unique key belonging to the host. Nodes are organized as a segment-based

structured overlay network. The node identifier space is split into two sub-spaces:

key space and host identifier space. Our scheme inherits the good properties

of DHT presented in Chapter 1.2, namely support for decentralized lookups to

minimize single point of failure, high result guarantee, and bounded lookup path

length.

Compared to existing DHT, the R-DHT scheme results in the following benefits:

1. Node autonomy in placing data items

In R-DHT, each node stores only its own key-value pairs, i.e. the index of

its shared resources, without depending on a third-party publicly-writable

nodes. Thus, nodes are read-only because they store only their own key-

value pairs, as in the “pay-for-your-own” usage model [22]. Updates to a

key-value pair are reflected immediately by the node that owns it. This

avoids data inconsistency as in conventional DHT.

2. Lookup performance

Though the size of R-DHT overlay is larger than DHT, the lookup path

length in R-DHT is at worst equal to DHT. The segment-based overlay of

R-DHT allows messages to be routed by segments and finger tables to be

shared among nodes. When the number of unique resource types (K) is

larger than the number of hosts (N), e.g. in file-sharing P2P systems, the

lookup path length in R-DHT is bounded by O(log N) as in traditional DHT

(Chord). However, when K ≤ N , e.g. in computational grid, the O(log K)-

hops lookup path length of R-DHT is shorter than traditional DHT.

3. Lookup resiliency to node failures

We demonstrate that R-DHT segment-based overlay reduces the number of

failed lookups (i.e. lookups that return a false negative or false positive an-

CHAPTER 1. INTRODUCTION 29

swer) in the event of node failures. In R-DHT, lookups for key-value pairs

shared by many nodes are more likely to succeed even without replicating

key-value pairs. When one of the node fails, only its own key-value pairs be-

come unavailable. The remaining key-value pairs in other nodes can still be

discovered because R-DHT exploits segment-based overlay by using backup

fingers. Thus, the probability to find resources of a certain type is higher

when there are many nodes sharing resources of that type.

4. Reuse of DHT functionalities

R-DHT reuses the existing functionalities from conventional DHT and as

such, improvements in DHT are beneficial to R-DHT as well. To demon-

strate this ability of R-DHT, we present R-Chord, an implementation of

R-DHT scheme that uses Chord as the underlying overlay graph. R-Chord

uses Chord’s join algorithm to construct its overlay network. In addition,

R-Chord’s lookup and stabilization are based on Chord’s lookup and stabi-

lization algorithm.

We show the performance and overhead of R-DHT scheme through theoretical

and simulation analysis.

Hierarchical R-DHT

We propose the design of a two-level R-DHT to reduce the maintenance overhead

of R-DHT overlay networks. The hierarchical R-DHT partitions the maintenance

overhead among smaller sub-overlays. To address the problem of collisions in the

top-level overlay, we propose a scheme to detect and resolve collisions in hierarchi-

cal R-DHT [96]. Collisions occur in the top-level overlay because of membership

changes when node joins or fails. We evaluate the effectiveness of this scheme

through simulations.

CHAPTER 1. INTRODUCTION 30

Multi-Attribute Range Queries on R-DHT

Midas is our proposed scheme to support multi-attribute range queries on R-DHT

[95]. The indexing scheme and query engine in Midas are based on d-to-one for

the following reasons:

1. One key per resource

d-to-one assigns one key to each resource so that the resource is later mapped

onto one R-DHT node only. This reduces the overhead of indexing resources

on R-DHT.

Midas uses Hilbert space-filling curve [124] as the d-to-one mapping function

because studies have indicated its effectiveness in preserving locality of multi-

dimensional indexes [74, 103].

2. Support for efficient query processing

Midas minimizes the number of lookup operations in processing a query by

invoking lookups only for available resources. In addition, Midas exploits the

locality of resource indexes to minimize the number of intermediate hops per

lookup operation.

3. Support for one-dimensional overlay network

Midas assigns to each resource a key which is drawn from a one-dimensional

key space. Therefore, resources can be mapped onto a node in a one-

dimensional R-DHT.

Using simulations, we show that query processing on R-DHT achieves a higher

result guarantee than conventional DHT. We also study the implication of data-

item distribution to the cost of processing queries. Our study indicates that for

the same size of queries, the cost of query processing in conventional DHT and

R-DHT is determined by the number of nodes and the number of query results,

CHAPTER 1. INTRODUCTION 31

respectively. This implies that R-DHT is more suitable when the number of query

results is small. To reduce the query cost in R-DHT when the number of query

results is large, an R-DHT-based system may perform data-item distribution only

among a set of trusted nodes and search for query results only within the trusted

nodes.

1.7 Thesis Overview

The remainder of this thesis is organized as follows.

Chapter 2 discusses the design of R-DHT and its Chord-based implementation

called R-Chord. We first present read-only mapping, the main concept in R-DHT.

Next, we discuss how the read-only mapping is applied to Chord, which results

in read-only Chord (R-Chord). Subsequently, we present the optimizations to

R-Chord lookup operations, i.e. routing by segments and shared finger tables.

This is followed by the maintenance of R-Chord overlay network which exploits

finger flexibility through backup fingers. We evaluate the performance of R-DHT

through theoretical and simulation analysis.

Chapter 3 presents a hierarchical R-DHT that reduces the overhead of overlay-

network maintenance. We discuss the design of hierarchical R-DHT where nodes

in the top-level overlay network are organized into a Chord ring. Then, we present

an approach to detect collisions in the hierarchical R-DHT by piggybacking pe-

riodic stabilizations, followed by two approaches to resolve the collisions, namely

supernode initiated and node initiated. Lastly, we present a simulation analysis on

hierarchical R-DHT.

Chapter 4 discusses Midas, a scheme to support multiple-attribute range queries on

R-DHT. Midas uses Hilbert space-filling curve as the d-to-one mapping function.

CHAPTER 1. INTRODUCTION 32

We describe the indexing scheme of Midas which maps resources to R-DHT nodes,

followed by Midas query engine which searches for resources that satisfy a given

query. We evaluate our approach through simulations.

Finally, Chapter 5 summarizes the results of this thesis and discusses some issues

that require further investigation.

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 33

Chapter 2

Read-only DHT: Design and

Analysis

A distributed hash table realizes the mapping of keys onto nodes through the

store operation. As a result, key-value pairs are distributed across the overlay

network [14, 99, 116, 123, 133]. Data-item distribution reduces node autonomy

in the aspect of key-value-pairs placement. This leads to the issues of data-item

ownership and conflicting self-interest among administrative domains. In this

chapter, we present R-DHT, a DHT scheme that does not distribute data items

across its overlay network. We start with the terminologies and notations used

throughout this chapter, followed by an overview of R-DHT. Then, we present

the design of R-DHT using Chord [133] as the underlying overlay graph. This is

followed by theoretical analysis and experimental evaluation, through simulations,

on R-DHT lookup performance and maintenance overhead. Finally, we conclude

this chapter with a summary.

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 34

2.1 Terminologies and Notations

In this section, we introduce the terms resource type, host, and node.

Definition 2.1. A resource type is the list of attribute names of a resource. The

resource type determines the key assigned to a resource. There could be many

resource instances with the same type; these resources are assigned the same key.

Definition 2.2. A host refers to a physical entity that shares resources. Let Th

denote the set of unique keys (i.e. resource types) owned by a host whose host

identifier is h.

Figure 2.1 illustrates how the above terminologies are applied to a computational

grid [47, 80]. In this example, host refers to the MDS server [4]. The two keys, T3 =

{2, 9}, denote that host 3 indexes two types of resources shared by administrative

domain 3. One resource type consists of three resource instances (e.g. machines),

each of which is identified by key 2. The other resource type refers to a resource

whose key is 9. Details on assigning a key to a resource is discussed in Chapter 4.

Figure 2.1: Host in the Context of Computational Grid

Definition 2.3. A node refers to a logical entity in an overlay network.

In terms of set theory, a multiple-valued function, virtualize : hosts → nodes,

describes the relationship between hosts and nodes (Figure 2.2). A host joins an

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 35

overlay network as one or more nodes, i.e. by assuming one or more identities in the

overlay. Clearly, each node corresponds to only one host. The notion of “nodes” is

equivalent to “virtual servers” in Cooperative File System [42] or “virtual hosts”

in Apache HTTP Server [1].

Figure 2.2: virtualize : hosts → nodes

Table 2.1 shows some of the important variables maintained by each host and

Chord node. In addition to its node identifier (n), each node maintains its states

in an overlay topology (finger, successor, and predecessor).

Entity Variable Description

Host h Th a set of unique keys owned by host h

Node n
finger[1 . . . F] a finger table of F entries
successor the next node in the ring overlay, i.e. finger[1]
predecessor the previous node in the ring overlay

Table 2.1: Variables Maintained by Host and Node

In presenting pseudocode, we adopt the notations from [133]:

1. Let h denote a host or its identifier, and n denotes a node or its identifier,

as their meaning will be clear from the context.

2. Remote procedure calls or variables are preceded by the remote node identi-

fier, while local procedure calls and variables omit the local node identifier.

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 36

2.2 Overview of R-DHT

R-DHT is a read-only DHT where a node supports “read-only” accesses to its keys,

and does not allow keys belonging to other nodes to be written (mapped) on it.

The read-only property ensures that keys are mapped onto their originating node.

With its read-only property, R-DHT addresses issues such as node autonomy in

placing key-value pairs, prevents stale data items, and increases lookup resiliency

to node failures without the need to replicate keys.

As shown in Figure 2.3, R-DHT achieves the read-only mapping by virtualizing a

host into a number of nodes where each node represents a unique key shared by

the host. The node identifier space is divided into two sub-spaces: a key space

and a host identifier space. This ensures the uniqueness of node identifiers without

compromising R-DHT’s support for a flat naming scheme [22]. Shared resources

of the same type is identified by the same key and forms a segment on the overlay

graph. A segment-based overlay reduces lookup path length and improves lookup

resiliency to node failures without a need to replicate data items.

Figure 2.3: Proposed R-DHT Scheme

As an example, we discuss how R-DHT supports distributed resource discovery

in a computational grid. A computational grid facilitates the sharing of compute

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 37

resources from different administrative domains [47, 80]. Typically, grid users

search for specific resources where their job will be executed [106]. In a central-

ized scheme, an MDS [4] indexes all resources from all administrative domains and

processes all user queries (Figure 2.4a). As the adoption of grid increases, the cen-

tral MDS becomes a potential bottleneck and a single point of failure. Recently,

there is a growing interest in studying the use of DHT-based resource discovery

for large computational grids [27, 28, 132, 145]. Instead of depending on a third-

party central MDS, DHT-based schemes distribute queries across administrative

domains organized as nodes in an overlay network (Figure 2.4b). With R-DHT

as the basis, a computational grid supports scalable distributed resource discov-

ery with high result guarantee, while preserving the autonomy of administrative

domains where each administrative domain stores its own resource metadata.

2.3 Design

In this section, we present the design of R-DHT. We first describe read-only map-

ping, the main concept in R-DHT. Then, we discuss the construction of R-DHT

overlay and the lookup algorithm using Chord [133] as the underlying overlay

graph. An alternative of R-DHT using CAN is described in Appendix A. Subse-

quently, we use “R-DHT” to refer to read-only DHT in general, and “R-Chord”

to refer to a Chord-based R-DHT.

2.3.1 Read-only Mapping

The basic idea of our proposal is to exploit DHT mapping whereby a key can

be mapped onto a specific node if the identifier of the node is equal to the key

(Figure 2.5). Thus, each node in R-DHT is a bucket with one unique key, as

opposed to conventional DHT where each node is a bucket with a number of

unique keys. R-DHT realizes the key-to-node mapping through virtualization

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 38

(a) Centralized

(b) Decentralized

Figure 2.4: Resource Discovery in a Computational Grid

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 39

and splitting of node identifiers. Virtualization ensures that each host can share

different keys, whereas the splitting of node identifiers prevents node collisions

when several hosts share the same key.

(a) Conventional DHT Maps Key to Node Identifier Closest
to the Key

(b) R-DHT Maps Key to Node Identifier Equal to the Key

Figure 2.5: Mapping Keys to Node Identifiers

R-DHT virtualizes each host into a number of nodes by associating node n to

each unique key k (i.e. a resource type) belonging to host h. Figure 2.6a shows

an example of virtualizing of two hosts into four nodes, where each host with two

unique keys is virtualized into two nodes. By making the node identifier equals to

its associated key, R-DHT ensures that keys are not distributed. However, when

nodes and keys share the same identifier space, virtualizing several hosts sharing

the same key results in collisions of node identifiers (Figure 2.6b).

To avoid the collision of node identifiers, a node associated to key k shared by

host h is assigned k|h as its identifier. Each node can be uniquely identified by its

node identifier which is the concatenation of the key (k) and the host identifier1

(h). Thus, we split the node identifier space into two sub-spaces: key space and

host identifier space. Figure 2.7a shows an example of node identifier where the

key and the host identifier are of the same bit-length2, i.e. (m/2) bits. We divide

1A host identifier can be derived by hashing the host’s IP address or an identifier obtained from
a certification authority [32].

2In general, the key space and the host identifier space need not be of the same size.

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 40

(a) Virtualize Two Hosts into Four
Nodes

(b) Collision of Node Identifiers

Figure 2.6: Virtualization in R-DHT

the m-bit node identifier space into 2m/2 segments. Each segment Sk consists of

2m/2 consecutive node identifiers prefixed with k (Figure 2.7b). Therefore, each

segment represents resources of the same type shared by different hosts. Segment

indexing reduces lookup path length and improves fault-tolerance.

(a) m-bit Node Identifier

(b) Segmenting Node-Identifier Space

Figure 2.7: R-DHT Node Identifiers

R-DHT is designed to maintain API compatibility with conventional DHT and

supports the flat naming scheme [22]. As shown in Table 2.2, R-DHT API requires

the same arguments as its DHT counterparts. The lookup(k) API of R-DHT

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 41

supports a flat naming scheme by abstracting away the location of keys in its

argument. With the flat naming scheme, queries are formulated as “find resource

type k”. This allows R-DHT to fully provide a hashtable abstraction where only

the key are required to retrieve key-value pairs. However, systems that supports

only a hierarchical naming scheme do not fully provide a hashtable abstraction

of locating key-value pairs. The hierarchical naming scheme requires users to

specify the location of the key as an argument to lookup operation, in addition

to the key itself. Thus, queries are formulated as “find resource type k from

host h”, which are reminiscent of HTTP requests: “retrieve index.html from

www.comp.nus.edu.sg”.

Operation
API

DHT R-DHT

Host h joins overlay through existing host e h.join(e) h.virtualize(e)
Host h shares new key k h.store(k) h.newKey(k)
Users at host h search for key k h.lookup(k) h.lookup(k)

Table 2.2: Comparison of API in R-DHT with Conventional DHT

R-DHT supports both a one-level overlay network (i.e. flat R-DHT) or a two-

level overlay network (i.e. hierarchical R-DHT). In the remainder of this chapter,

we discuss flat R-DHT in the following aspects: construction of overlay, lookup

algorithm, and maintenance of overlay. Hierarchical R-DHT will be discussed in

Chapter 3.

2.3.2 R-Chord

R-Chord is a flat R-DHT that organizes nodes as a (one-level) Chord overlay.

Figure 2.8 presents how a new host joins R-Chord, and how an existing host

shares a new key. Each new node join the ring overlay using Chord’s join protocol

(line 5 and 13 in Figure 2.8). Nodes are organized as a logical ring in clock-wise

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 42

ascending order where each node identifier (k|h) is interpreted as an integer. Let

N denote the number of hosts, and K = |
⋃N−1

h=0 Th| denote the total number of

unique keys in the system. R-Chord divides its ring overlay into K segments where

segment Sk consists of nodes prefixed with k. Thus, each segment Sk represents

resources of the same type (i.e. all resources with key k) shared by different hosts.

1. // h joins R-DHT through an existing host e
2. h.virtualize(e)
3. for each k ∈ Th do
4. n = k|h;
5. n.join(e); // Chord’s protocol [133]

6. // h shares a new key k
7. h.newKey(k)
8. if k ∈ Th

9. return;
10.
11. Th = Th ∪ {k};
12. n = k|h;
13. n.join(h); // Chord’s protocol [133]

Figure 2.8: Virtualizing Host into Nodes

Figure 2.9 compares Chord and R-Chord in a grid consisting of three administra-

tive domains (hosts), assuming that keys and host identifiers are 4-bit long. In

Chord (Figure 2.9a), each host becomes a Chord node and its keys are distributed

to another node whose identifier immediately succeeds the key. For example, all

keys with identifier 2 will be stored on node 3. In R-Chord (Figure 2.9b), each

key is mapped to its originating node. In this example, host 3 owns two unique

keys, i.e. T3 = {2, 9}, and thus, we virtualize host 3 into two nodes with node

identifiers 2|3 = 35 and 9|3 = 147. Similarly, we virtualize host 6 and host 9 into

one node and three nodes, respectively. We then organize the six nodes as an

R-Chord ring based on their integral node identifier. The R-Chord ring consists

of three segments, namely segment S2 with node 2|3 and node 2|9, segment S5

with node 5|9 and 5|6, and segment S9 with node 9|3 and node 9|9. These three

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 43

segments represents three keys (resource types): key 2, key 5, and key 9.

(a) Chord Distributes Data Items among Three Nodes

(b) R-Chord Virtualizes Three Hosts into Six Nodes

Figure 2.9: Chord and R-Chord

R-DHT prevents stale data items when updated by their originating node, while

conventional DHT must route the update to the node where the data item is

distributed. Before the update reaches the node, the data item becomes stale.

Referring to Figure 2.9, when host 3 updates its key 9, Chord routes the update

to node 9 which stores the key. On the other hand, in R-Chord the update is

reflected immediately because key 9 is mapped onto node 9|3 which is associated

with host 3 itself.

By design, R-DHT is inherently fault tolerant without a need to incorporate data-

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 44

item replications as a resiliency mechanism. Firstly, a node failure does not affect

keys belonging to other nodes. Secondly, lookup(k) can still be successful since R-

DHT can route the lookup request to other alive nodes in segment Sk. Figure 2.10

shows an example when administrative domain 3 with two shared resource types

is down. Since administrative domain 9 is still alive, R-Chord can still locate

resource type 2 by routing a lookup(2) request to node 2|9 (Figure 2.10a). On the

contrary, the lookup fails in Chord because it is routed to node 3 (Figure 2.10b).

Typically, conventional DHT replicates keys to improve its resiliency. However,

this increases the risk of stale data items, i.e. data items pointing to unavailable

resources in the inaccessible administrative domain 3 (Figure 2.10c).

2.3.3 Lookup Optimizations

R-DHT supports a flat naming scheme where users need to specify only key k when

searching. R-DHT bases its lookup on the underlying overlay’s lookup protocol.

With Chord as the underlying overlay, each node maintains at most m unique

fingers (Figure 2.11). Lookup for key k implies locating the successor of k|0, i.e.

the first node in segment Sk. Figure 2.12 shows a direct application of Chord

lookup algorithm on R-Chord. If a lookup returns a node n′ where prefix(n′) = k,

then key k is successfully found (line 11); otherwise, the key does not exist (line

14).

The direct application of Chord’s lookup is not efficient because it does not exploit

the advantages of read-only mapping. In a system with N hosts where each

host has T =
ΣN−1

h=0 |Th|
N

unique keys on average, R-Chord consists of N · T nodes

and hence, its lookup path length is O(log NT) hops (see Theorem 2.1). To

reduce the lookup path length, R-Chord exploits the read-only mapping scheme by

incorporating two optimizations, namely routing by segments and shared routing

tables. The complete algorithm is shown in Figure 2.13.

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 45

(a) R-Chord

(b) Chord without Replication

(c) Replication Introduces Stale Data Items

Figure 2.10: Node Failures and Stale Data Items

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 46

Figure 2.11: The Fingers of Node 2|3

1. // Ask h to find a node in segment Sk

2. h.lookup(k)
3. k′ = a key randomly chosen from Th;
4. n = k′|h;
5.
6. return n.node lookup(k);

7. // Ask n to find a node in segment Sk

8. n.node lookup(k)
9. if k == prefix(n.successor) then
10. // n’s successor shares k
11. return n.successor;
12.
13. if n < k|0 < n.successor then
14. return n.successor;
15.
16. n′ = n.closest preceding node(k|0);
17. h′ = suffix(n′);
18. return h′.lookup(k);

(a) Main Algorithm

1. // Ask n to find the closest predecessor of id.
2. n.closest preceding node(id)
3. for i = m downto 1 do
4. if (n < finger[i] ≤ id) then
5. return finger[i];
6.
7. return n;

(b) Helper Functions

Figure 2.12: Unoptimized R-Chord Lookup

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 47

1. // Ask h to find a node in Sk

2. h.lookup(k)
3. for each j ∈ Th do
4. if j == k then
5. return k|h; // h is in Sk

6.
7. n =find segment in fingers(k);
8. if n 6= NOT FOUND then
9. return n; // n is in the preceding segment of Sk

10.
11. for each j ∈ Th do
12. n = j|h;
13. if n < k|0 < n.successor then
14. return n.successor;
15.
16. n = closest preceding node(k);
17. h′ = suffix(n);
18. return h′.lookup(k);

(a) Main Algorithm

1. // Ask h to find a finger pointing to Sk

2. h.find segment in fingers(k)
3. for each j ∈ Th do // Iterate all local nodes
4. n = j|h;
5. for i = 1 to m do
6. if prefix(n.finger[i]) == k then
7. return n.finger[i];
8.
9. return NOT FOUND

10. // Ask h to find the closest predecessor of id.
11. h.closest preceding node(id)
12. x = id + 1; // Initialize to the farthest predecessor
13.
14. for each k ∈ Th do
15. n = k|h;
16. for i = m downto 1 do
17. f = n.finger[i];
18. if (n < f < id) // Is f the closest predecessor known by node n?
19. and (x < f < id) then // Is f a closer predecessor than x?
20. x = f ;
21.
22. return x;

(b) Helper Functions

Figure 2.13: R-Chord Lookup Exploiting R-DHT Mapping

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 48

2.3.3.1 Routing by Segments

R-DHT divides its node-identifier space into segments, with each segment rep-

resenting a key. Therefore, locating key k equals to locating any node within

segment Sk, instead of strictly locating successor(k|0) only. R-Chord exploits

this segmentation by forwarding a lookup(k) request from one segment to another

segment (line 4, 7, and 16 in Figure 2.13a, and line 6 in Figure 2.13b). Each rout-

ing step halves the distance, in term of segments, to the destination segment Sk

(see Lemma 2.2 for the proof). As such, in a system with K segments, routing by

segments reduces lookup path length to O(log K). Since segments are identified

by the prefix of node identifiers, our routing-by-segments scheme is essentially a

prefix-based routing optimization applied for the Chord lookup protocol.

Figure 2.14 illustrates the processing of a lookup(k) request initiated by node

n1. Without routing by segments, i.e. the direct application of Chord’s lookup

protocol, the lookup path is n1 → n2 → n3 → n4 → n5 because we always locate

node n5 = successor(k|0). However, with routing by segments, we realize that one

of the intermediate hops, node n2, has a finger pointing to n6. Though node n6 is

not successor(k|0), it also shares key k and is in segment Sk. Since the lookup can

then be completed at node n6, the optimized lookup path becomes n1 → n2 → n6.

2.3.3.2 Shared Finger Tables

To limit the lookup path length at O(log N) hops even when K > N , our routing

algorithm utilizes all the |Th| finger tables maintained by each host h (line 3 and

11 in Figure 2.13a, and line 3 and 14 in Figure 2.13b). In other words, a node’s

finger table is shared by all nodes from the same host. As such, visiting one host is

equivalent to visiting all the |Td| nodes which correspond to the host (Figure 2.15).

The proof that this optimization leads to O(log N)-hop lookup path length, similar

to Chord, is presented in Theorem 2.2. However, the intuitive explanation is as

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 49

(a) No Routing by Segments

(b) Routing by Segments

Figure 2.14: lookup(k) with and without Routing by Segments

follows: since the distance between any two points in the overlay is at most N

hosts, it takes O(log N) hops to locate any segment. Thus, even though the number

of nodes in the overlay is greater than N due to host virtualization, the lookup

path length is not affected.

2.3.4 Maintenance of Overlay Graph

As with Chord, R-Chord maintains its overlay through periodic stabilizations.

The periodic stabilization is implemented as two functions: stabilize successor()

and correct fingers(). The first function corrects successor pointers, i.e. the first

finger, in addition to predecessor pointers, whereas the later correct the remaining

fingers in a finger table. The rate in which these functions are invoked is an

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 50

(a) Visiting Host 3 is Equal
to Visiting Node 2|3 and Node
9|3 in the Overlay

(b) Visiting Host 6

(c) Visiting Host 9 — All
Nodes are Visited

Figure 2.15: Effect of Shared Finger Tables on Routing

implementation matter.

During the periodic stabilization, R-Chord exploits finger flexibility which is inher-

ent in our segment-based overlay. Finger flexibility denotes the amount of freedom

available when choosing a finger. A higher finger flexibility increases the robust-

ness of lookup since finger tables deplete slower in the event of node failures [62].

Finger flexibility also allows proximity-based routing to reduces lookup latency.

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 51

However, our current R-Chord implementation has yet to exploit this feature.

The segment-based overlay improves the finger flexibility of R-Chord whereby

n.finger[i] is allowed to point to any nodes in the same segment as successor(n+

2i−1) – this is an improvement over O(1) finger flexibility of Chord3. To exploit

this finger flexibility, we employ the backup fingers scheme which is reminiscent of

Kademlia’s κ-bucket routing tables [99]. With such a scheme, every R-Chord node

n maintains backups for each of its fingers. Thus, when f dies (i.e. points to a dead

node), n still has a pointer to segment Sprefix(f). The new structure of R-Chord

finger table is shown in Figure 2.16. We use n.finger[i] and backup(n.finger[i])

to denote the main finger and the list of backup fingers, respetively.

Description Finger Backups

1st finger a|x a|y, a|z
2nd finger b|t b|r, b|s, b|u

.

Figure 2.16: Finger Tables with Backup Fingers

Figure 2.3.4 shows the algorithm to correct successors in R-Chord. When a new

successor is detected, the old successor pointer is added into the backup list instead

of being discarded (line 7). Similarly, when a new predecessor is to be set, the

old predecessor is also added into the backup list (line 19). We then ensure that

the backup list of successors and predecessors contains only nodes with the same

prefix as the new successor (line 9) and predecessor (line 21), respectively.

Figure 2.18 shows that the algorithm to correct finger f in R-Chord exploits

finger flexibility. When a new finger is added, we also construct its backup list

based on the entries piggybacked from the remote node and the older valid backup

3To improve its robustness in spite of its lower finger flexibility, each Chord node caches addi-
tional entries in its finger tables. Such scheme can also be adopted in R-Chord.

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 52

1. // n verifies its successor pointer, and announces itself to the successor.
2. n.stabilize successor()
3. p = successor.predecessor;
4. if n < p < successor then
5. // Prepare a new backup list
6. backup(successor) = backup(successor) ∪ successor
7. ∪ backup(p);
8. Remove backup(successor) entries whose prefix 6= prefix(p);
9.
10. successor = p; // New successor pointer
11. successor.notify(n);

12. // n′ thinks it might be our predecessor
13. n.notify(n′)
14. if (predecessor == nil) or (predecessor < n′ < n) then
15. // Prepare a new backup list
16. backup(predecessor) = backup(predecessor) ∪ predecessor
17. ∪ backup(n′);
18. Remove backup(predecessor) entries whose prefix 6= prefix(n′);
19.
20. predecessor = n′; // New predecessor pointer

Figure 2.17: Successor-Stabilization Algorithm

entries (line 7–9 in Figure 2.18a). As with lookups, the finger-correction algorithm

incorporates shared finger tables (line 4 in Figure 2.18a and line 3 in Figure 2.18b).

2.4 Theoretical Analysis

In this section, we analyze the lookup performance of R-Chord, and compare the

overhead of the mapping scheme in R-Chord and conventional Chord-based DHT

(hereafter referred simply as Chord). Let N denote the number hosts, Th denote

the set of unique keys owned by host h, T denote the average number of unique

keys owned by each host (i.e.
ΣN−1

h=0 |Td|
N

), and K denote the total number of unique

keys in the system (i.e. |
⋃N−1

h=0 Th|). The Chord overlay consists of N nodes (one

node per host) and the R-Chord overlay consists of V (= NT) nodes (on average,

T nodes per host).

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 53

1. // Node n to correct its ith finger.
2. n.correct finger(i)
3. f = n + 2i−1;
4. h = suffix(n);
5. f ′ = h.find successor(f);
6.
7. // Prepare a new backup list
8. backup(finger[i]) = backup(finger[i]) ∪ finger[i] ∪ backup(f ′);
9. Remove backup(finger[i]) entries whose prefix 6= prefix(f ′);
10.
11. finger[i] = f ′; // New finger

(a) Main Algorithm

1. // Ask host h to find successor(id).
2. h.find successor(id)
3. for each k ∈ Th do
4. n = k|h;
5. if n < id ≤ n.successor then
6. return n.successor;
7.
8. n = closest preceding node(id); // See Figure 2.13b
9. return n′.find successor(id);

(b) Helper Functions

Figure 2.18: Finger-Correction Algorithm

2.4.1 Lookup

In order to analyze the lookup performance in R-Chord, we first present the proof

on Chord lookup path length (see also Theorem 2 in [133]).

Theorem 2.1. In an N-node Chord overlay, the lookup path length is O(log N).

Proof. Suppose that node n wishes to locate the successor of k. Let p be the node

that immediately precedes k. To prove the lookup path length, we first show that

each routing step halves the distance to p.

If n 6= p, then n forwards a lookup request to the closest predecessor of k in its

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 54

finger table. If p is located in the interval [n + 2i−1, n + 2i), then n will contact

its ith finger, the first node f in the interval. The distance between n and f is at

least 2i−1, and the distance from f to p is at most 2i−1. This also means that the

distance from f to p is at most half of the distance from n to p.

Assume that node identifiers are uniformly distributed in the 2m circular identifier

space, the number of forwarding necessary to locate k will be O(log N), which is

explained as follows. After i forwarding, there are N/2i remaining nodes to choose

for the next forwarding. Thus, with log N forwarding, there is only one node as

the next hop; this node is the successor of k. �

In the following, we present the proof on the lookup path length of R-Chord

utilizing two intermediate results, Lemma 2.1 and Lemma 2.2.

Lemma 2.1. The probability that host h owns key k, i.e. P (k ∈ Th), is bounded

by ln K
K−T

.

Proof. Let k ∈ Th denote key k owned by host h. We define the probability that

host h owns key k as

P (k ∈ Th) = P (e1) + P (e2|e1) + P (e3|e1, e2) + . . . + P (eT |e1, . . . , eT−1)

=
T∑

i=1

P (ei|e1 . . . ei−1)

where ei denotes the outcome for ki = k, and ei denotes the outcome for ki 6= k.

Assuming that T � K and k is uniformly drawn from {1, ..., K}, we approximate

P (k ∈ Th) using the first-order Markov process as follows. Firstly, we consider K

resource types as K balls, each of which with a unique color. If we pick T balls

sequentially, then the probability that the ith outcome, where i ≤ T , produces the

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 55

k-colored ball is 1
K−i+1

. This leads to the following equation:

P (k ∈ Th) =

0 if T = 0

1
K

if T = 1∑T
i=1

1
K−i+1

=
∑K

i=K−T+1
1
i

if T > 1

Since Hx =
∑x

i=1
1
i

= ln x + O(1), then

P (k ∈ Th) =

0 if T = 0

1
K

if T = 1

HK −HK−T if T > 1

=

0 if T = 0

1
K

if T = 1

ln K
K−T

if T > 1

�

Lemma 2.2. Routing by segments leads to O(log K)-hops lookup.

Proof. To analyze the lookup path length due to our routing-by-segments opti-

mization, we compare the finger tables in R-Chord and Chord.

According to Theorem 2.1, in a Chord system consisting of N nodes, the lookup

path length is O(log N) if Chord is able to route a lookup request from one node

to another such that each step halves the distance to the destination node. To

achieve this, each node n maintains O(log N) unique fingers where:

1. The distance between n and n.finger[i + 1] is twice the distance between n

and n.finger[i].

2. The largest finger of n points to successor(N/2).

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 56

We now show the similarity of finger tables in R-Chord and Chord. Let S =

O(NP (k ∈ Th)) denote the average number of nodes in a segment. In an R-Chord

system consisting of V nodes, each node n maintains O(log V) unique fingers

where:

1. The first O(log S) of the O(log V) fingers point to the segment containing

n.successor. The remaining O(log V −log S) fingers point to O(log V −log S)

different segments because the distance between n and n.finger[log(S+j+1)]

is twice the distance between n and n.finger[log(S + j)], where 0 ≤ j ≤

log N − log S.

2. The largest finger of n will point to successor(N/2), which is a node in the

segment that succeeds segment K/2.

Using the same argument as in Chord, R-Chord routes a lookup request from one

segment to another and each hop halves the distance, in terms of the number of

segments, to the destination segment. Since R-Chord consists of K segments, a

lookup will cost O(log K) hops. �

Theorem 2.2. With shared finger tables, the lookup path length in R-Chord is

O(min(log K, log N)) hops.

Proof. If K ≤ N then log K ≤ log N . Thus, according to Lemma 2.2, this theorem

is true.

Consider K > N . When host h processes lookup(k), we choose two consecutive

keys s, u ∈ Th where

1. s < k < u

2. There is no v ∈ Th such that s < v < u

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 57

The two keys, s and u, are associated with two nodes, namely node s|h and node

u|h, respectively. The destination segment Sk will be located between node s|h

and node u|h, and the distance between s|h and u|h is O(K/T). Since K ≤ V ,

then K/T = O(V/T) = O(NT/T) = O(N). Thus, according to Theorem 2.1,

lookup(k) can be routed from node s|h to segment Sk in O(log N) hops. �

Theorem 2.2 shows that the lookup performance in R-Chord is at worst com-

parable to the lookup performance in Chord. Due to the shared finger tables,

R-Chord’s lookup path length is equivalent to Chord where the number of hops

to reach a certain node is affected by the number of hosts in the physical network

(N) instead of the number of nodes in the overlay network (V).

2.4.2 Overhead

The following theorems compare the maintenance overhead in R-Chord and Chord

in terms of the cost of virtualization, number of fingers per host, cost of updating

data items, and overhead of replication.

Theorem 2.3. The cost for a host to join R-Chord and Chord is O(|Th| log2 V)

and O(log2 N + |Th| log N + K ln K
K−T

), respectively.

Proof. R-Chord virtualizes a host into |Th| nodes in an overlay graph of size V .

Since a node join costs O(log2 V), the host join costs O(|Th| log2 V).

In Chord, a host join consists of a node-join operation, |Th| store operations to

store the key-value pairs belonging the new host, and migrations of key-value

pairs. The node-join operation costs O(log2 N) and each store operations costs

O(log N). The migration process moves O(N/K) unique keys from an existing

node, which is the successor of the new node, to the new node n. As there are

O(NP (k ∈ Th)) key-value pairs per unique key, the migration costs O(K ln K
K−T

).

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 58

Therefore, the host join costs O(log2 N + |Th| log N + K ln K
K−T

) in total. �

Theorem 2.3 shows that the cost to join R-Chord is higher than Chord. This is

because R-Chord replaces a store operation with a join operation, and the cost of

a join operation is higher than a store operation.

Theorem 2.4. A host maintains O(|Th| log V) and O(log N) unique fingers in

R-Chord and Chord, respectively.

Proof. In a R-Chord ring consisting of V nodes, each node maintains finger table

consisting of O(log V) unique fingers. Because R-Chord virtualizes a host into |Th|

nodes, the host maintains O(|Th| log V) fingers in total.

In Chord, each host joins a ring overlay as a node. Thus, with N hosts, the Chord

ring consists of N nodes where each node maintains O(log N) unique fingers. �

The following theorem shows the overhead of maintaining an overlay, i.e. stabi-

lization cost, in terms of the number of messages sent.

Theorem 2.5. In R-Chord, the stabilization cost to correct all fingers (including

successor pointers) is O(V log N log V) messages. Since N ≤ V , the stabilization

cost is also Ω(V log2 V) messages. On the other hand, the stabilization cost in

Chord is O(N log2 N) messages.

Proof. R-Chord overlay consists of V nodes and each node maintains O(log V)

fingers. Correcting the ith finger of node n is performed by locating the node

that succeeds n + 2i−1; this costs O(log N) hops, i.e. shared finger tables as the

only lookup optimization (see Theorem 2.2). Thus, the cost of stabilization is

O(V log V log N) hops.

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 59

In Chord, the overlay consists of N nodes and each node maintains O(log N)

fingers. Correcting each finger is performed by locating successor(n+2i−1), which

costs O(log N) hops. Thus, the cost of stabilization is O(N log2 N) hops. �

Theorem 2.4–2.5 states that a higher number of fingers implies a higher overhead

in maintaining an overlay graph. This affects the scalability of R-Chord partic-

ularly when a host is virtualized into many nodes. To reduce the overhead of

periodic stabilizations, which are employed by the current implementation of R-

Chord to correct fingers, nodes need not to correct all their fingers each time the

stabilization procedure is invoked. Instead, each invocation corrects only a subset

of a node’s fingers, e.g. the successor pointer and another randomly-chosen finger;

this is similar to Chord’s current implementation of periodic stabilizations. The

drawback of this approach is the increase of the number of incorrect entries in a

finger table; this increases the lookup path length. However, as long as the suc-

cessor pointer, i.e. the first finger, is maintained, the lookup will still terminate at

the correct node.

Theorem 2.6. The finger flexibility in R-Chord and Chord is O(N ln K
K−T

) and

O(1), respectively.

Proof. Assume that successor(n + 2i−1) is in segment Sk, in R-Chord, the ith

finger of node n can point to any node in segment Sk. The number of nodes

in this segment is equal to to the number of hosts that own key k, which is

O(NP (k ∈ Th)) hosts. Hence, the finger flexibility is O(N ln K
K−T

).

In Chord, the ith finger of n must point to successor(n + 2i−1), and hence, O(1)

finger flexibility. �

As mentioned in Section 2.3.4, a higher finger flexibility increases the robustness

of lookup in the presence of node failures. Higher finger flexibility also allows

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 60

proximity-based routing to reduces lookup latency.

Theorem 2.7. In Chord, adding a key-value pair costs O(log N). In R-Chord,

adding a key-value pair whose key k already exists in host h (i.e. k ∈ Th before

the addition) costs O(1), while adding a key-value pair whose key is new for host

h (i.e. k /∈ Th before the addition) costs O(log2 V).

Proof. In Chord, a key-value pair is stored on the successor of the key. This costs

O(log N).

In R-Chord, if k ∈ Th before the addition, then no new node is created and hence,

the cost is O(1). However, if k /∈ Th before the addition, then a new node is

created and joins the R-Chord system. This costs O(log2 V). �

In applications such as P2P file sharing, sharing a new file is equal to adding a

new resource type. However, in computational grid, a resource type consists of

many resource instances, and an administrative domain can add new instances

to one of its existing resource type. Theorem 2.7 shows that using R-Chord, the

administrative domain does not need to notify other nodes in the R-Chord overlay.

Theorem 2.8. In R-Chord, the total number of key-value pairs with the same

key is O(N ln K
K−T

). In Chord, assuming that each key-value pair is replicated

O(log N) times, then the total number of key-value pairs with the same key is

O(N ln K
K−T

log N).

Proof. Given N hosts, the number of key-value pairs with the same key is O(NP (k ∈

Th)). Since R-Chord does not redistribute and replicate key-value pairs, the num-

ber of key-value pairs with the same key is also O(N ln K
K−T

). In Chord, because

each key-value pair is replicated O(log N) times, then the total number of key-

value pairs with the same key will be O(N ln K
K−T

log N). �

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 61

R-Chord does not need to replicate data items to improve the lookup resiliency to

node failures. This eliminates the network bandwidth required to replicate data

items and the complexity in maintaining consistency among replicas.

Even when data items are not replicated, data-item distribution can still lead to

the problem of inconsistent data items. In conventional DHT, updates must be

propagated from to the node responsible to store a data item. This is shown in

the following corollary.

Corollary 2.1. In Chord, the cost of a host to update its key-value is O(log N).

In R-Chord, the cost is O(1).

Proof. In Chord, the cost for a host (the originating node) to propagate an update

on its key-value pair to another node costs O(log N), according to Theorem 2.1.

In R-Chord, the key-value pair is mapped to its originating node. Hence, the cost

of updating the key-value pair is O(1). �

Corollary 2.1 shows that R-Chord improves the performance of a host in updating

its data items, including the deletion of data items. In the case of computational

grid, updates occur when an administrative domain changes the configuration of

its shared resources, or changes the number of resource instances of a resource

type.

2.4.3 Cost Comparison

Table 2.3 summarizes the performance analysis of R-Chord. We show that the

lookup path length in R-Chord is shorter than Chord and in the worst case, it

is equal to Chord. However, our mapping scheme increases the cost for a host

to join an overlay. In addition, each host in R-Chord has more fingers to correct

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 62

due to the host being virtualized into nodes. Thus, the scalability of R-Chord is

determined by the number of nodes associated to each host. When each host is

virtualized into one node only, the scalability of R-Chord is equal to traditional

Chord.

Property Chord R-Chord

Lookup a key O(log N) O(min(log K, log N))

Host join
O(log2 N +
|Th| log N +
K ln K

K−T
)

O(|Th| log2 V)

unique fingers per host O(log N) O(|Th| log V)

Finger flexibility O(1) O(N ln K
K−T

)

Stabilization O(N log2 N) O(V log V log N)

Add a key that exists O(log N) O(1)

Add a new key O(log N) O(log2 V)
Update a key-value pair O(log N) O(1)

key-value pairs with the same key O(N ln K
K−T

log N) O(N ln K
K−T

)

Table 2.3: Comparison of Chord and R-Chord

2.5 Simulation Analysis

In this section, we evaluate R-DHT by simulating an R-Chord-based resource

indexing and discovery scheme in a large computational grid. As illustrated in

Figure 2.4b, a computational grid consists of many administrative domains, each

of which share one or more compute resources. Each administrative domain,

represented by its MDS server (i.e. host), joins an R-Chord overlay and stores

only its own resource metadata (i.e. data items). The key of each data item is

determined by the type (i.e. attributes) of compute resource associated with the

data item. Thus, the number of unique keys owned by a host denotes the number

of unique resource types shared by an administrative domain.

To facilitate our experiments, we implement R-Chord using the Chord simulator

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 63

[2]. Let m = 18-bit unless stated otherwise. The network latency between hosts is

exponentially distributed with a mean of 50 ms, and the time for a node to process

a request is uniformly distributed in [5, 15] ms. In the following subsections, we

compare the lookup path length, resiliency to node failures, time to correct overlay,

and lookup performance on incorrect overlays.

2.5.1 Lookup Path Length

To verify Theorem 2.2, we measure the average lookup path length of 500,000

lookups that arrived based on a Poisson distribution with mean arrival rate λ = 1

lookup/second. Each lookup requests for a randomly selected key and is initiated

by a randomly chosen host. Assuming that T denotes the average number of

unique keys per host, each host has |Th| ∼ U [0.5T, 1.5T] unique keys.

As shown in Figure 2.19, the average lookup path length in R-Chord is 20-30%

lower than in Chord. When K (= NT) > N , R-Chord’s overlay consists of K

segments and each segment consists of one node. According to Theorem 2.2, the

lookup path length of R-Chord is affected only by N , and hence, increasing K

does not increase the lookup path length. However, for K ≤ N , the lookup path

length increases with K.

Figure 2.19 also shows that in R-Chord, increasing T reduces the average path

length, which can be explained as follows. First, as each host maintains O(|Th| log NT)

unique fingers (Theorem 2.4), an increase in T also increases the number of fin-

gers per hosts. Several studies such as [64, 122] also reveal that maintaining more

fingers reduces the lookup path length. Secondly, an increased in T increases

the number of segments occupied by a host, and hence, each host has a higher

probability to be visited.

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 64

(a) N = 10, 000 Hosts

(b) N = 25, 000 Hosts

Figure 2.19: Average Lookup Path Length

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 65

Our simulation result confirms Theorem 2.2, i.e. when K > N , the lookup path

length in R-Chord has the same upper bound as Chord. When K ≤ N , the lookup

path length in R-Chord is shorter than Chord.

2.5.2 Resiliency to Simultaneous Failures

To evaluate the resiliency when no churn occurs, we measure the average lookup

path length and failed lookups with the following procedures. First, we setup a

system of N = 25, 000 hosts where all hosts have T unique keys on average. Then,

we fail a fraction of hosts4 simultaneously, disable the periodic finger correction

after the simultaneous failures, and simulate 500,000 lookup requests with mean

arrival rate λ = 1 lookup/second (Poisson distribution). We define a lookup for a

key as fail if it results in (i) a false negative answer where existing resources (i.e.

at least one originating node of the key is alive) cannot be located, or (ii) a false

positive answer where stale data items are returned. We also assume that Chord

stores a key-value pair only to successor(key) and does not further replicate the

key-value pair to several other nodes. Finally, we exploit the property of finger

flexibility in R-Chord by maintaining a maximum of four backups per finger.

Figure 2.20 shows the average lookup path length with 25% and 50% of simultane-

ous host failures. For K (= TN) > N , the average lookup path length in R-Chord

shows a trend similar to that of in Chord, i.e. lookup path length increases as more

hosts fail (Figure 2.20a). Because each segment consists of only one node, R-Chord

cannot exploit finger flexibility. Hence, as the percentage of host failures increases,

the number of valid fingers, i.e. pointing to alive nodes, reduces in each node’s fin-

ger table. For K ≤ N (Figure 2.20b), R-Chord has a shorter average path length

than Chord and the lookup path length is not significantly affected by the number

of failed hosts. The reason is as follow. Firstly, R-Chord provides O(log K)-hops

4In R-Chord, one host fail results in simultaneous node fails.

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 66

lookup path length only if each node has a correct finger tables. In the case of

node failures, the finger table has a reduced number of valid fingers; this increases

the lookup path length. However, since K ≤ N implies each segment consists of

more than one node, R-Chord effectively exploits finger flexibility to maintain the

number of valid fingers.

In terms of failed lookups, Figure 2.21 shows that for K > N and K ≤ N , R-

Chord is 70% and 95% lower than in Chord, respectively. For (K = NT) > N

(Figure 2.21a), Chord has more failed lookups because key-value pairs are stored

on another host. In the event of the host that stores the key-value pair fails, a

lookup request to that host will be unsuccessful though the host that owns the

key-value pair is still alive. For K ≤ N (Figure 2.21b), R-Chord achieves even

less failed lookups (95% lower than Chord) because R-Chord exploits the property

that each key is available in a segment consisting of several nodes. Hence, even

if some of these nodes fail, R-Chord can still reach the remaining hosts in the

segment through the backup fingers. Thus, R-Chord offers better resiliency to

simultaneous failures in comparison to the conventional DHT.

2.5.3 Time to Correct Overlay

The correctness of an overlay network is crucial to the lookup performance in

DHT. To ensure the correctness of an overlay in the event of membership changes,

each node periodically corrects its fingers, i.e. periodic stabilization. However,

the larger size of R-Chord overlay (Theorem 2.3 and Theorem 2.4) increases the

stabilization cost ((Theorem 2.5). To amortize the maintenance overhead, periodic

stabilization in R-Chord is performed less aggresively, similar to Chord, where each

invocation of the stabilization procedure corrects only a subset of a node’s fingers,

e.g. the successor pointer and another randomly-chosen finger. However, this may

increase the time required to correct an R-Chord’s overlay.

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 67

(a) K = NT Unique Keys

(b) K = 5, 000 Unique Keys

Figure 2.20: Average Lookup Path Length with Failures (N = 25,000 Hosts)

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 68

(a) K = NT Unique Keys

(b) K = 5, 000 Unique Keys

Figure 2.21: Percentage of Failed Lookups (N = 25,000 Hosts)

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 69

In this experiment, we evaluate the time required to correct the overlay topology,

which is measured starting from the time when the last host arrives. To facilitate

this measurement, we quantify the correctness of an overlay using stabilization

degree (ξ) which is derived by averaging the correctness of all finger tables in the

overlay network (ξn).

ξ =

∑N−1
n=0 ξn

N
0 ≤ ξ ≤ 1 (2.1)

and

ξn =

 0 if n.finger[1] is incorrect

F ′

F

(2.2)

where 0 ≤ ξn ≤ 1, F ′ is the number of correct fingers in n, and F is total number

of fingers in n. Note that we do not consider backup fingers in calculating ξn.

The experiment is performed as follows. We simulate a system consisting of N

hosts with mean arrival rate λ = 1 host/second. The number of unique keys

per host is |Th| ∼ U[2, 5] unique keys and therefore, T = 3.5 unique keys. We

assume that the total number of unique keys in the system is K = 3N keys; this

K approximates NT keys where each segment consists of one node on average.

We then periodically measure ξ starting from the time when the last host arrives.

A node joins a ring overlay through a randomly chosen existing node. We base

our node-join process on the one described in [133]. First, a new node n starts

the join process by adding n′ = find successor(n) as its successor pointer. After

one or more rounds of finger correction, there will be at least one other node

pointing to n. At this time, the join process completes. Note that R-Chord uses

the find successor() which incorporates shared finger tables (Figure 2.18b).

Each node invokes the finger correction every [0.5p, 1.5p] seconds (uniform dis-

tribution). Each invocation of finger correction will correct the successor pointer

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 70

(n.finger[1]) and one other finger. Correcting n.finger[i] is done by updating it

with the node returned by find successor(n + 2i−1).

Figure 2.22 reveals that at larger p (960 seconds in this experiment), nodes in

Chord correct their successor pointer (i.e. n.finger[1]) faster than R-Chord. For

examples, when N = 25, 000 hosts, ξ in Chord increases from 0.36–0.59 in the

first three hours, which is faster than R-Chord (0.31 – 0.38). The same behavior

is also observed in N = 50, 000 hosts. This is because ξn puts more priority on

the successor pointer (see Equation (2.2)). Hence, by correcting successor pointers

faster, Chord increases its ξ faster than R-Chord.

Conclusively, although R-Chord has a larger overlay and each of its hosts has to

correct more fingers, R-Chord does not require a longer time than Chord to fully

correct its overlay. This is due to shared finger tables reducing the time to locate

the correct successor when correcting a finger.

2.5.4 Lookup Performance under Churn

Churn refers to membership changes in an overlay network. In R-DHT, churn

occurs in two ways. Firstly, host arrivals, host fails, and host leaves results in

simultaneous node joins, node fails, and node leaves, respectively. Secondly, adding

a new unique key to a host also causes a node join (Theorem 2.7). When the

frequency of membership changes (i.e. churn rate) is high, lookup performance

may decrease because the larger overlay of R-DHT magnifies the impact of churn

on the correctness of overlay topology.

To evaluate the ability of R-DHT to cope with churn, we simulate lookups when R-

Chord ring overlay keeps changing due to host arrivals, failures, and leaves. When

a node leaves, it notifies its successor and predecessor. In addition, a node leaving

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 71

(a) N = 25, 000 Hosts

(b) N = 50, 000 Hosts

Figure 2.22: Correctness of Overlay ξ (Measured Every Three Hours Starting
From the Last Host Arrival)

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 72

a Chord ring migrates all data items belonging to other nodes to its successor

without delay.

In this experiment, we assume that each host has |Th| ∼ U[4, 12] unique keys

(which results in T = 8 unique keys), and each node invokes the finger correction

procedure every [30, 90] seconds (uniform distribution). We first set up an overlay

network of 25,000 hosts, followed by a number of churn events (i.e. arrivals, fails,

and leaves) produced by 25,000 hosts in a duration of one hour. Thus, there will

be about N = 25, 000 alive hosts at any time within this duration. During this

one-hour period, we also simulate a number of lookup events and keep the ratio of

arrive:fail:leave:lookup to be 2:1:1:6. The mean arrival rate of these events, λ, will

model the churn rate. Assuming that these events follow a Poisson distribution,

our simulation uses λB = 10 events/second and λG = 40 events/second; these

are derived from the measurements on peer life-time by Bhagwan et. al. [25] and

Gummadi et. al. [63], respectively5. Table 2.4 presents the result for various K,

from 5,000 (K < N) to 150,000 (K ∼ NT).

The average lookup path length (Table 2.4a) again confirms Theorem 2.2 and the

result from Subsection 2.5.1. Though the number of nodes in R-Chord’s overlay

is at least three times Chord, when K < N the average lookup path length is

shorter than Chord since R-Chord routes lookups by segments. When K ≥ N ,

the average lookup path length is not worse than Chord due to the shared finger

tables.

5λB is obtained as follows. Bhagwan et. al. [25] measures that on average, each host performs
6.4 joins, and 6.4 fails per day [25]. We interpret the measured fail events as consisting of 3.2
host fails and 3.2 host leaves. Thus, including lookups, there are 32 events per day. With
25,000 hosts come and go repeteadly, there are 800,000 events per day, which is approximately
one event every 100 ms.
Similar steps as above are used to derive λG. Gummadi et. al. [63] measures 24 joins and 24
fails per host per day, and we interpret the measured fails as consisting of 12 host fails and
12 host leaves. Given 25,000 hosts and a ratio of arrive:fail:leave:lookup = 2:1:1:6, there are
approximately one event every 25 ms.

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 73

K
λB = 10 ev./sec. λG = 40 ev./sec.

Chord R-Chord Chord R-Chord

5,000 8.4 4.1 9.1 4.7
7,500 8.5 4.4 9.1 5.0

10,000 8.5 4.6 9.3 5.4
15,000 8.5 4.9 9.1 5.8
25,000 8.5 5.3 9.2 6.5
50,000 8.5 5.9 9.3 7.2
75,000 8.5 6.2 9.5 7.7

100,000 8.6 6.4 9.4 8.0
125,000 8.6 6.5 9.2 8.1
150,000 8.6 6.6 9.4 8.3

(a) Average Lookup Path Length

K
λB = 10 ev./sec. λG = 40 ev./sec.

Chord R-Chord Chord R-Chord

5,000 2% <1% 7% 2%
7,500 2% <1% 9% 2%

10,000 3% 1% 9% 3%
15,000 4% 1% 13% 4%
25,000 4% 1% 15% 9%
50,000 7% 5% 20% 13%
75,000 10% 7% 20% 26%

100,000 7% 5% 23% 25%
125,000 6% 7% 30% 26%
150,000 8% 16% 27% 34%

(b) % of Failed Lookups

Table 2.4: Lookup Performance under Churn (N ∼ 25, 000 Hosts)

Table 2.4b shows that lookup resiliency in R-Chord is comparable to Chord (from

8% lower to 9% higher than Chord). Under a churn rate of λB and λG, R-Chord

has a lower percentage of failed when K ≤ 100, 000 and K ≤ 50, 000, respectively.

The results indicate the importance of exploiting finger flexibility through backup

fingers. In R-DHT, lookup resiliency is increased due to the property that a key

can be found in several nodes of the same segment. Hence, it is important that

a segment can be reached as long as it contains one or more alive nodes. R-

Chord addresses this issue by maintaining backup fingers as redundant pointers

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 74

to a segment. With a higher number of nodes per segment (i.e. finger flexibility),

backup fingers are more effective in reducing the impact of a churn rate to lookup

resiliency. As K is increased, the number of nodes per segment decreases. Because

finger flexibility is reduced, there are less redundancy to be exploited through

backup fingers. Considering that R-Chord’s overlay is eight times larger than

Chord’s overlay, we conclude that the decrease is reasonable.

In summary, the result in this subsection suggests that R-Chord achieves better

resiliency when finger flexibility is exploited. When R-Chord cannot exploit fin-

ger flexibility, it can still achieve comparable resiliency as Chord because by not

distributing data items, failure of a host affects only its own data items.

2.6 Related Works

In this section, we first compare and contrast R-DHT with structured P2P sys-

tems that support the no-data-item-distribution scheme. Secondly, we discuss the

current status of distributed resource indexing and discovery in a computational

grid.

2.6.1 Structured P2P with No-Store Scheme

We discuss three structured P2P that also support the no-data-item-distribution

scheme, namely SkipGraph [20], Structella [30], and SkipNet [68].

SkipGraph [20] supports the no-store scheme by associating a key to a node and

organizing nodes as a skip-list-like topology. It is assumed that each key is shared

only by one node, e.g. resources of the same type are shared only by one adminis-

trative domain. Our proposed scheme generalizes SkipGraph by first, allowing a

key to be associated with several nodes. Secondly, our scheme can organize nodes

with different structured overlay topologies.

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 75

Structella [30] organizes nodes as a structured overlay (i.e. a Pastry ring [123])

but each node manages only its own keys, similar to R-DHT. However, unlike

DHT, Structella does not map keys onto nodes. Instead, Structella employs the

routing schemes used in unstructured P2P such as flooding and random walk,

and exploits its structured overlay to reduce the overhead of those schemes. The

authors reported that Structella offers similar results guarantee as unstructured

P2P. To improve results guarantee, the authors propose to distribute and replicate

data items to a number of nodes [31]. In contrast, R-DHT maps keys onto nodes

and exploits DHT-based lookup schemes. Thus, even without distributing data

items, R-DHT offers the same level of result guarantee as other DHT.

SkipNet [68] supports content locality to map a key onto a specific node. This is

achieved through the hierarchical naming scheme: put(n|key) maps a key to node

n, and lookup(n|key) retrieves the key. Compared to our proposed scheme, SkipNet

provides greater flexibility for a host to decide where its data items are stored.

However, the hierarchical naming scheme does not directly supports queries such

as “find resources of type k in any hosts”. In contrast, though R-DHT addresses

node autonomy only by ensuring that data items are stored on their originating

host, it is compatible with flat naming scheme.

Table 2.5 summarizes the comparison of R-DHT with the three no-data-item-

distribution scheme.

2.6.2 Resource Discovery in Computational Grid

We classify distributed grid information systems based on their overlay topology

into unstructured overlay networks [72, 91] and structured overlay networks (DHT)

[27, 28, 132, 145].

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 76

Characteristic SkipGraph Structella SkipNet R-DHT

Mapping Scheme Yes No Yes Yes
High Result Guarantee Yes No Yes Yes
Key Shared by Many Hosts No Yes Yes Yes
Controlled Data Placement No No Yes No
Flat Naming Scheme Yes Yes No Yes

Overlay Network Skip List Pastry
Multi-Level

Ring
Multiple
Choices

Table 2.5: Comparison of R-DHT with Related Work

In unstructured overlay networks, the routing-transferring model replicates re-

source information to all nodes proposed [91]. However, this consumes communi-

cation bandwidth. Iamnitchi [72] proposes to replicate information based on the

small-world effect and uses heuristics to aid lookup. However, heuristics do not

guarantee that a lookup will successfully find resources. In contrast, DHT-based

systems provides stronger lookup guarantee and scalable lookup performance.

MAAN [28], self-organizing Condor pools [27], XenoSearch [132], and RIC [145] are

examples of grid information systems that are based on conventional structured

overlay networks. Compared to such schemes, our R-DHT-based grid information

system increases the autonomy of administrative domains by not distributing data

items. In addition, our scheme does not introduce stale data items when the

overlay topology changes, and it is resilient to node failures without a need to

replicate data items.

2.7 Summary

Distributed hash table maps each key onto a node to achieve good lookup perfor-

mance. A typical DHT realizes this mapping through the store operation and as a

result, key-value pairs are distributed across the overlay network. To address the

requirements of applications where distributing key-value pairs is not desirable,

we propose R-DHT, a new DHT mapping scheme without the store operation. R-

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 77

DHT enforces the read-only property by virtualizing a host into nodes subjected

to the unique keys belonging to the host, and dividing the node identifier space

into two sub-spaces (i.e. a key space and a host identifier space). By mapping

data items back onto its owner, R-DHT is inherently fault tolerant. In addition,

it increases consistency of data items because updates need not be propagated

in overlay networks. R-DHT maintains API compatibility with existing DHT. In

addition, R-DHT lookup operations exploit not only existing DHT lookup scheme,

but also routing by segments, shared finger tables, and finger flexibility through

backup fingers.

Through theoretical and simulation analysis, we show that in a Chord-based R-

DHT consisting of N hosts and K total unique keys, the lookup path length is

O(min(log K, log N)) hops. This result suggests that our proposed lookup opti-

mization schemes can reduce lookup path length in other DHTs that also virtual-

izes hosts into nodes. We further demonstrate that R-DHT lookup is resilient to

node failures. In our simulations, when 50% of nodes fail simultaneously, the num-

ber of failed lookup in R-Chord is 5–30%; this is lower compared to Chord where at

least 60% of its lookups fail. Our simulation also shows that under churn, lookup

performance of R-Chord is comparable to Chord even though R-Chord overlay is

eight times larger: (i) R-Chord lookup path length is shorter, and (ii) number of

failed lookups in R-Chord is at most 8% worst than Chord.

The host-to-nodes virtualization in R-DHT increases the size of overlay network in

terms of number of nodes. This leads to higher overhead in maintaining an overlay

network. In an R-Chord system that virtualizes N hosts into V nodes where

V ≥ N , the maintenance overhead is O(V log V log N). With the same number of

hosts, the maintenance overhead in Chord is O(N log2 N). Our simulation analysis

further revealed that when stabilization period is large, R-Chord requires more

CHAPTER 2. READ-ONLY DHT: DESIGN AND ANALYSIS 78

time to correct its overlay into a ring topology. To address the problem of overlay-

network maintenance in R-Chord, we present in the next chapter hierarchical

R-DHT where nodes are organized into a two-level overlay network.

CHAPTER 3. HIERARCHICAL R-DHT 79

Chapter 3

Hierarchical R-DHT: Collision

Detection and Resolution

Stabilization refers to the procedure for correcting routing states to adapt to

changes in an overlay topology. The overlay topology changes when new nodes

join, or existing nodes leave or fail. The one-level R-DHT (i.e. flat R-DHT) pre-

sented in the previous chapter achieves the same lookup path length as conven-

tional DHT (Theorem 2.1) but with higher stabilization cost, i.e. the maintenance

overhead (Theorem 2.5). In a system consisting of N hosts where each host has

T unique keys on average, a flat R-DHT overlay consists of V (= NT) nodes.

Compared to a conventional DHT overlay consisting of N nodes, R-DHT corrects

a higher number routing-table entries which, according to Theorem 2.5, is due to:

1. The number of routing tables is proportional to V , i.e. one routing table per

node.

2. The size of each routing table is increased as V increases (Theorem 2.4).

CHAPTER 3. HIERARCHICAL R-DHT 80

In the case of R-Chord, it takes Ω(V log2 V) stabilization messages to correct all V

finger tables, including successor and predecessor pointers, in an R-Chord overlay,

i.e. Ω(V log2 V) hops per finger table.

In this chapter, we discuss a hierarchical R-DHT scheme that reduces its mainte-

nance overhead by organizing nodes into a two-level overlay network. To address

the problem of collision of groups, we propose a collision-detection method that

piggybacks on stabilization, and two collision-resolution methods. Collisions occur

when concurrent node joins result in nodes with the same group identifier being

created at the top-level overlay. This increases the size of the top-level overlay,

which in turn increases the total number of stabilization messages in the top-level

overlay. In the worst case, collisions lead to the degeneration of hierarchical DHT

into flat DHT, i.e. every node occupies the top-level overlay.

The rest of this chapter is organized as follows. We first present existing ap-

proaches to reduce maintenance overhead in DHT. Next, using R-Chord as the

example, we propose a collision detection and resolution scheme. We evaluate

our proposed scheme through simulation experiments. Finally, we conclude this

chapter with a summary.

3.1 Related Work

A number of approaches have been proposed to reduce the maintenance overhead

of DHT. We classify existing approaches into three main categories, (i) varying

frequency of stabilization, (ii) varying number of routing states to correct, and (iii)

hierarchical DHT. The first two approaches are directly applicable to flat R-DHT.

CHAPTER 3. HIERARCHICAL R-DHT 81

3.1.1 Varying Frequency of Stabilization

Frequency-based approaches such as adaptive stabilization [29, 52], piggybacking

stabilization with lookups [17, 90], and reactive stabilization [17] reduce the main-

tenance overhead by reducing the frequency in correcting routing states. Adaptive

stabilization adjusts the frequency based on churn rate and the importance of each

routing state to lookup performance1. Systems such as DKS [17] and Accordion

[90] piggyback stabilization with lookups to reduce the necessity of performing

dedicated periodic stabilization2. Reactive stabilization such as DKS’s correction-

on-change [53] does away altogether with periodic stabilization. Instead, changes

to overlay networks due to membership changes are propagated immediately when

membership-change events are detected. However, Rhea et. al. have reported that

reactive stabilization can increase maintenance overhead under high churn rate

and constrained bandwidth availability [119].

3.1.2 Varying Size of Routing Tables

This approach reduces the size of routing tables so that the number of routing

states to correct becomes smaller. Examples of DHT that implement this approach

include CAN [116], Koorde [76], and Accordion [90]. However, reducing the size

of routing tables potentially increases lookup path length [139].

Besides reducing the size of routing tables, each routing table can also be parti-

tioned into two parts: one part consisting of entries that are corrected through

stabilization, and the other part consisting of cached entries. This reduces the

maintenance overhead while achieving a shorter lookup path length. For example,

a finger table in Chord consists of O(log N) fingers and a number of location caches

where the location caches are maintained by the LRU replacement policy [2].

1Routing states with higher importance, e.g. successor pointers in Chord [133] and leaf sets in
Pastry [123], are refreshed/corrected more frequently.

2In DKS, this is referred as correction on use.

CHAPTER 3. HIERARCHICAL R-DHT 82

3.1.3 Hierarchical DHT

Hierarchical DHT partitions stabilization among different overlays. This speeds

up each stabilization process and reduces the number of stabilization messages in

each of the overlays. Hierarchical DHT organizes nodes into a multi-level overlay

network, where the top-level overlay consists of logical groups [51, 68, 77, 101,

137, 140, 143]. Each group, which consists of a number of nodes, is assigned a

group identifier based on a common node property. For examples:

1. Grouping by administrative domains [68, 101, 143] improves the administra-

tive autonomy and reduces latency.

2. Grouping by physical proximity [137, 140] reduces network latency.

3. Grouping by services [77] promotes the integration of services into one sys-

tem.

In each group, one or more supernodes act as gateways to the nodes at the second-

level. Within each group, nodes can further form a second-level overlay network.

In terms of topology maintenance, the hierarchical DHT has the following advan-

tages compared to the flat DHT:

1. Each stabilization message in a hierarchical DHT is routed only in one of

the smaller second-level overlays. This reduces the number of stabilization

messages processed by each node.

2. Topology changes within a group due to churn do not affect the top-level

overlay or other groups. Stable overlay topologies improves the result guar-

antee of DHT lookups.

In the following, we compare our proposed scheme with existing hierarchical DHT.

We discuss how each scheme addresses the problem of collisions.

CHAPTER 3. HIERARCHICAL R-DHT 83

In hierarchical DHT such as Brocade [143], SkipNet [68], and hierarchical Scribe

[101], collisions do not occur because a new node always chooses a bootstrap node

from the same group. In such systems, nodes are grouped by their administrative

domains. Therefore, it is natural for the new node to choose a bootstrap node from

the same administrative domain. This grouping policy guarantees that multiple

group with the same group identifier are not created. However, such systems do

not address other grouping policies that can introduce collisions, i.e. when a new

node is bootstrapped from a node in a different group.

In systems such as the hierarchical DHT by Garcés-Erice et. al. [51], Diminished

Chord [77], Hieras [140], and HONet [137], collisions can occur but the problem is

not directly addressed. They assume that collisions can be resolved by mechanisms

inherent in the system structure, and the extent of collisions is not studied.

In [77, 140], all nodes in a group are assumed to be supernodes. In such systems,

the size of the top-level overlay, with or without collisions, is the same. Hence, the

stabilization procedure of the underlying DHT is sufficient to resolve collisions.

However, the size of the top-level overlay is larger than in systems where only

a subset of nodes become supernodes. Thus, the total number of stabilization

messages is larger because more supernodes have to perform stabilization.

In [51, 137], a new node can choose a bootstrap node from a different group.

Hence, it is possible that the bootstrap node cannot locate the group associated

with the new node, even though the group exists. However, the effect and impact

of the collisions are not evaluated.

To summarize the above comparisons, our scheme relaxes the assumption that

a new node must be bootstrapped from the same group and all group members

must become supernodes. In addition, our scheme resolves collisions to maintain

CHAPTER 3. HIERARCHICAL R-DHT 84

the top-level overlay size that is close to the ideal size.

3.2 Design of Hierarchical R-DHT

In an R-DHT framework with V nodes and K (≤ V) unique keys, the hierarchical

R-DHT organizes the nodes into a two-level overlay network. The top-level overlay

consists of K groups, and each group consists of nodes that share the same key.

Therefore, groups are equivalent to segments in a flat R-DHT. Every group has

one or more supernodes that act as gateways to other nodes in the group. These

supernodes are organized in the top-level overlay. Each group can further organize

its nodes as a second-level overlay with a topology and stabilization mechanism

that differ from the top-level. Clearly, each of the overlay networks in a hierarchical

R-DHT is smaller than the flat R-DHT overlay. Thus, while each host h is still

virtualized into |Th| nodes, each of the nodes will join a smaller overlay network

than in the flat R-DHT network. As a result, each node maintains and corrects

a smaller number of fingers than the flat R-DHT’s nodes. Figure 3.1 shows a

hierarchical R-Chord where the top-level ring consists of four groups.

Figure 3.1: Two-Level Overlay Consisting of Four Groups

CHAPTER 3. HIERARCHICAL R-DHT 85

Nodes in the hierarchical R-DHT are assigned two identifers, as opposed to nodes

in the flat R-DHT. In the flat R-DHT, n = k|h denotes that k|h is the node

identifier of node n. In the hierarchical R-DHT, we also assign a group identifier

to node n. The value of the group identifier is equal to prefix(n), which is k.

In addition, each second-level node in the hierarchical R-DHT holds a pointer to

at least one of the supernodes in its group. Table 3.1 summarizes the important

variables maintained by each node, in addition to the ones presented in Figure 2.1.

Variable Description

gid m-bit group identifier (= prefix(n))
is super true if n is a supernode, false otherwise
supernode Pointer to supernode of group gid, nil if n is a supernode.

Table 3.1: Additional Variables Maintained by Node n in a Hierarchical R-DHT

In hierarchical R-DHT, locating key k implies locating the group responsible for

k. Firstly, a lookup request for key k is routed to the supernode of the initiating

group. Secondly, using R-DHT lookup algorithm (Figure 2.13), the lookup request

is further routed to the supernode of group k, i.e. a supernode whose node identifier

is prefixed with k. Thirdly, the lookup request can be further forwarded to one

of the second-level nodes in group k, depending on the application. As illustrated

in Figure 3.2, a lookup request for key 2, initiated by second-level node 6|6, is

forwarded to its supernode 6|4 (step 1). In the top-level overlay, the lookup

request is routed to supernode 2|7 of group 2 (step 2). Finally, supernode 2|7

can further forward the request to its second-level nodes (step 3), e.g. lookup for

compute resources of type 2 in multiple administrative domains.

If new nodes join hierarchical R-DHT when some routing states in the top-level

overlay are incorrect, i.e. yet to be updated, the top-level overlay may end up with

two or more groups with the same group identifier. In the following subsections,

CHAPTER 3. HIERARCHICAL R-DHT 86

Figure 3.2: Example of a Lookup in Hierarchical R-DHT

we discuss how collisions occur, and then present our proposed scheme to detect

and resolve collisions. To avoid sending additional overhead messages, collision

detection is performed together with successor stabilization, i.e. the process of

correcting successor pointers. This is because successful collision detections re-

quire the successor pointers in the top-level Chord overlay to be correct, and the

correctness of the successor pointers is maintained by stabilization.

3.2.1 Collisions of Group Identifiers

Collisions of group identifiers arise because of join operations invoked by nodes.

Figure 3.3 shows the node-join algorithm for hierarchical R-Chord. Node n, whose

group identifier is denoted as n.gid, makes a request to join group g through

bootstrap node n′. In a hierarchical R-Chord, this means finding successor(g|0)

in the top-level overlay. If n′ successfully finds an existing group g, then n joins this

group using a group-specific protocol (line 5–9). However, if n′ returns g′ > g, then

n creates a new group with identifier g (line 11–15). A collision occurs if the new

group is created even though a group with identifier g has already been created.

This happens due to n and bootstrap node n′ are in two different groups, and

the top-level overlay has not fully stabilized (i.e. some supernodes have incorrect

successor pointers).

CHAPTER 3. HIERARCHICAL R-DHT 87

1. // Node n joins through bootstrap node n′

2. n.join(n′)
3. h′ = suffix(n′);
4. s = h′.find successor(gid|0); // See Figure 2.18b
5. if (gid == s.gid)
6. // s is a supernode of group g
7. join group(s);
8. is super = false;
9. supernode = s
10. else
11. // n creates a new group.
12. // This can cause a collision.
13. predecessor = nil;
14. successor = s;
15. is super = true;

Figure 3.3: Join Operation

Figure 3.4 illustrates a collision that occur when node 1|2 and node 1|3 belonging

to the same group g1, join concurrently. Due to concurrent joins, find successor()

invoked by both nodes, during their join operation, will return node 2|7. This

causes both the new nodes to create two groups with the same group identifier g1.

Figure 3.4: Collision at the Top-Level Overlay

3.2.2 Collision Detection

We propose to perform collision detections during successor stabilization. This is

achieved by extending Chord’s stabilization so that it not only checks and corrects

CHAPTER 3. HIERARCHICAL R-DHT 88

the successor pointer of supernode n, but also detects if n and its new successor

should be in the same group. Figure 3.5 presents our collision detection algorithm,

assuming that each group has only one supernode. The algorithm first ensures that

the successor pointer of a node is valid (line 4–5). It then checks for a potential

collision (line 8–10), before updating the successor pointer to point to the correct

node (line 11–13).

1. // n periodically verifies its successor pointer,
2. // and announces itself to the successor.
3. n.stabilize successor()
4. if successor.is super == false then
5. successor = successor.supernode();
6.
7. p = successor.predecessor;
8. if ((p 6= n) and (p.gid == gid)) then
9. if is collision(p) then
10. merge(p);
11. else if n.gid < p.gid < successor.gid then
12. successor = p;
13. successor.notify(n);

(a) Main Algorithm

14. // n′ thinks it might be our predecessor
15. n.notify(n′)
16. if (predecessor == nil)
17. or (predecessor.is super == false)
18. or (predecessor < n′ < n)
19. then
20. predecessor = n′;

21. // Assume one supernode per group
22. n.is collision(n′)
23. if (gid == n′.gid)
24. return true
25.
26. return false

(b) Helper Functions

Figure 3.5: Collision Detection Algorithm

CHAPTER 3. HIERARCHICAL R-DHT 89

(a) (b)

(c) (d)

Figure 3.6: Collision Detection Piggybacks Successor Stabilization

The following example illustrates the collision detection process. In Figure 3.6a,

a collision occurres when node 1|2 and 1|3 belonging to the same group, group 1,

join concurrently. In Figure 3.6b, node 1|3 stabilizes and causes node 2|7 to set

its predecessor pointer to node 1|3 (step 1). Then, the stabilization by node 0|5

causes 0|5 to set its successor pointer to node 1|3 (step 2), and node 1|3 to set its

predecessor pointer to node 0|5 (step 3). In Figure 3.6c, the stabilization by node

1|2 causes 1|2 to set its successor pointer to node 1|3. At this time, a collision is

detected by node 1|2 and is resolved by merging 1|2 to 1|3.

If each group contains more than one supernodes, then is collision routine shown

in Figure 3.5 may incorrectly detect collisions. Consider the example in Fig-

CHAPTER 3. HIERARCHICAL R-DHT 90

ure 3.7a. When node n stabilizes, it incorrectly detects a collision with node n′

because n.successor.predecessor = n′ and n.gid = n′.gid. An approach to avoid

this problem is for each group to maintain a set of its supernodes [51, 65] so

that each supernode can accurately decide whether a collision has occurred. The

modified collision detection algorithm is shown in Figure 3.7b.

(a) Multiple Supernodes in Each Group

1. n.is collision(n′)
2. // L is a set of supernodes in my group
3. if n′ /∈ L then
4. return true
5.
6. return false

(b) Modified is collision Algorithm

Figure 3.7: Collision Detection for Groups with Several Supernodes

3.2.3 Collision Resolution

To resolve collisions, groups associated with the same gid are merged. After the

merging, some supernodes become ordinary nodes depending on the group policy.

Before a supernode changes its state into a second-level node, the supernode no-

tifies its successors and predecessors to update their pointers (Figure 3.8). Nodes

in the second level also need to be merged to the new group. We propose two

methods to merge groups, namely supernode initiated and node initiated.

CHAPTER 3. HIERARCHICAL R-DHT 91

1. // Set predecessor of n to n′

2. n.replace predecessor(n′)
3. predecessor = n′;

4. // Set successor of n to n′

5. n.replace successor(n′)
6. successor = n′;

Figure 3.8: Announce Leave to Preceding and Succeeding Supernodes

1. // Nodes joins the group where n′ is the supernode
2. n.merge(n′)
3. is super = false
4.
5. // Announce leave to neighbors in top-level overlay
6. successor.replace predecessor(predecessor);
7. predecessor.replace successor(successor);
8. predecessor = successor = nil;
9.
10. n′.join group(n);
11. g = prefix(n);
12. for each node x ∈ g do
13. x.join group(n′);
14. x.supernode = n′

Figure 3.9: Supernode-Initiated Algorithm

3.2.3.1 Supernode Initiated

To merge a group n.gid with another group n′.gid, the supernode n notifies its

second-level nodes to join group n′.gid (Figure 3.9). The advantage of this ap-

proach is that second-level nodes join a new group as soon as a collision is detected.

However, n needs to keep track of its group membership, which may not always

be correct. If n has only partial knowledge of group membership, some nodes in

the second-level can become orphans.

3.2.3.2 Node Initiated

In node-initiated merging, each second-level node periodically checks that its

known supernode n′ is still a supernode (Figure 3.10). If n′ is no longer a su-

CHAPTER 3. HIERARCHICAL R-DHT 92

pernode, then the second-level node will ask n′ to find the correct supernode

and join a new group through the new supernode. This approach does not re-

quire supernodes to track group membership. However, an additional overhead

is introduced due to second-level nodes periodically checking the status of their

supernode.

1. // Supernode n joins another group,
2. // ignoring its second-level nodes
3. n.merge(n′)
4. is super = false;
5.
6. // Announce leave to neighbors in top-level overlay
7. successor.replace predecessor(predecessor);
8. predecessor.replace successor(successor);
9. predecessor = successor = nil;

(a) Main Algorithm

10. // Second-level node n periodically
11. // verifies its supernode pointer
12. n.check supernode()
13. if supernode.is super == false then
14. x = supernode.supernode;
15. supernode = x;
16. join group(x);

(b) Helper Functions

Figure 3.10: Node-Initiated Algorithm

3.3 Simulation Analysis

To evaluate the effectiveness of our proposed scheme, we first show that hier-

archical R-Chord significantly reduces maintenance overhead, compared to flat

R-Chord. Then, we study the performance of collision detection and resolution

by comparing two systems: without detect & resolve (i.e. hierarchical R-Chord

without collision detection and resolution) and detect & resolve (i.e. hierarchical

R-Chord with collision detection and resolution). We assume that each group

CHAPTER 3. HIERARCHICAL R-DHT 93

contains one supernode. To resolve collisions, we use the supernode-initiated ap-

proach. Since the emphasis of this experiment is to study collisions at the top-level

R-Chord and the purpose of collision resolution is to ensure that second-level over-

lays are correct after a collision, the choice of collision-resolution approach does

not significantly affect the result of this experiment.

We extend the Chord simulator included in Chord SDK [2] to model a hierarchical

R-Chord. The average inter-arrival time of nodes is exponentially distributed with

a mean of one second. Each supernode maintains a successor pointer, a predecessor

pointer, and O(log KC) fingers. In addition, each supernode periodically invokes

the stabilization procedure. With a stabilization period parameter of p (in sec-

onds), the stabilization period is uniformly distributed in the interval [0.5p, 1.5p].

In the simulators, each stabilization corrects the successor pointer and one of the

fingers. The link latency between nodes is exponentially distributed with a mean

of 50 ms and the request-processing time by each node is uniformly distributed

between 5 and 15 ms.

3.3.1 Maintenance Overhead

We measure the maintenance overhead by the total number of stabilization mes-

sages in the top-level overlay. We simulated hierarchical and flat systems with

50,000 and 100,000 nodes (V). For the number of groups (K) in the top-level

overlay, we chose the values of 2,000 and 8,000. Thus, we evaluated four different

R-Chord configurations. In addition, we compare the maintenance overhead of

hierarchical R-Chord to Chord. The results are shown in Figure 3.11.

As shown in Figure 3.11, hierarchical R-Chord significantly reduces the main-

tenance overhead of its top-level overlay compared to flat R-DHT, because the

top-level overlay consists of only K groups. Hence, there are a smaller number of

CHAPTER 3. HIERARCHICAL R-DHT 94

fingers to correct. When we double V from 50,000 to 100,000 nodes, the total num-

ber of stabilization messages does not increase; this is in contrast to flat R-Chord.

In both systems, the number of stabilization messages reduces by 50% when p is

increased from 30 seconds to 60 seconds, because stabilization is performed less

frequently.

The overhead to maintain the top-level overlay of hierarchical R-Chord is lower

than Chord consisting of N = 10, 000 hosts, but is still higher than Chord consist-

ing of N = 1, 000 hosts. This is because the maintenance overhead of hierarchical

R-Chord and Chord depends on K and N , respectively. In hierarchical R-Chord,

the maintenance overhead in the top-level overlay is O(K log2 K) because there

are K groups in the top-level overlay and each supernode of a group maintains

O(log K) fingers3. Note that the total cost to maintain a hierarchical R-Chord,

which includes the cost to maintain second-level overlays, is Ω(V log N log V).

However, this can be amortized through less frequent stabilizations in the second-

level overlays. Unlike the top-level overlay where an incorrect topology causes

all nodes sharing the same resource type to be inaccessible, an incorrect second-

level overlay causes only a subset of nodes sharing the same resource type to be

inaccessible.

We discuss briefly the comparison with the hierarchical DHT schemes presented

in Section 3.1.3. In [51, 68, 101, 137, 143], the maintenance overhead for their

top-level overlay is higher than hierarchical R-DHT when their top-level overlay is

larger than K. In [77, 140], the size of their top-level overlay is always O(N). In

addition, each node joins more than one overlay network, i.e. the top-level overlay

plus the lower-level overlay networks. Hence, the maintenance overhead for their

top-level overlay is higher than hierarchical R-DHT when N > K. Moreover, in

the case of Hieras [140], the number of overlay levels can be greater than two and

3The proof is similar as in Theorem 2.5.

CHAPTER 3. HIERARCHICAL R-DHT 95

(a) p = 30 Seconds

(b) p = 60 Seconds

Figure 3.11: Maintenance Overhead of Hierarchical R-Chord

CHAPTER 3. HIERARCHICAL R-DHT 96

each node is present in every level. Therefore, the maintenance overhead of the

whole Hieras overlays is higher when the size of its all overlays is greater than V .

3.3.2 Extent and Impact of Collisions

Consider the total number of stabilization messages required at the top-level R-

Chord overlay. Let K (≤ N) denote the number of groups and V denote the

number of nodes. Each group employs one supernode and hence, we expect that

the ideal size of the top-level overlay consists of K supernodes. Without collisions,

the total number of stabilization messages (S) is O(K log2 K) because there are

K groups that perform stabilization, each group corrects O(log K) fingers, and

the cost of correcting each finger is O(log K). With collisions, the size of top-

level overlay is increased by c times, i.e. cK groups. As each group performs

periodic stabilization, the cost of stabilization when collisions occur (SC) is Ω(cS)

(Equation 3.1).

Sc

S
=

cK log2 cK

K log2 K
=

c log2 cK

log2 K
= Ω(c) (3.1)

Table 3.2 shows the extent of collisions from measuring the total number of colli-

sions for different values of the stabilization period p. Without resolving collisions,

the number of collisions is about 2 to 5 times K. With frequent stabilization, our

scheme significantly reduces the number of collisions. But as p increases, the num-

ber of collisions grows because of the reduced frequency of collision resolution.

The impact of collisions is measured by the growth in the size of the top-level

overlay. Figure 3.12 shows the number of groups at an interval of one hour.

Without collision resolution, the size of the top-level overlay grows to about 2 to

5 times K because the additional groups caused by collisions will remain in the

CHAPTER 3. HIERARCHICAL R-DHT 97

p
Without Detect & Resolve Detect & Resolve

K = 2, 000 K = 8, 000 K = 2, 000 K = 8, 000

30 5,740 11,421 56 33
60 5,941 11,511 113 153

120 6,425 12,823 1,181 1,088
240 8,914 15,905 1,609 2,349

(a) V = 50,000 Nodes

p
Without Detect & Resolve Detect & Resolve

K = 2, 000 K = 8, 000 K = 2, 000 K = 8, 000

30 7,097 16,930 35 23
60 7,232 17,009 212 136

120 7,830 17,979 641 1,133
240 9,813 20,139 1,942 3,023

(b) V = 100,000 Nodes

Table 3.2: Number of Collisions

top-level overlay. If the size of the top-level overlay increases by 5 times, then the

total number of stabilization messages is increased by Ω(5) times. On the other

hand, detect & resolve merges the colliding groups so that the size of the overlay

converges to that of the ideal size K.

Figure 3.12 also shows that more frequent stabilization keeps the top-level overlay

size that is close to the ideal size. With a larger p, stabilization is performed less

frequently. Thus, more stabilization rounds are required to correct the successor

pointers. Since our scheme is performed together with stabilization to reduce

overhead, it takes a longer time to reduce the size of the top-level overlay close to

the ideal size. As an example, with p = 240 seconds, it takes at least 15 hours to

reduce the top-level overlay size to the ideal size (Figure 3.12b).

CHAPTER 3. HIERARCHICAL R-DHT 98

(a) p = 30 Seconds

(b) p = 240 Seconds

Figure 3.12: Size of Top-Level Overlay (V = 100, 000 Nodes)

CHAPTER 3. HIERARCHICAL R-DHT 99

3.3.3 Efficiency and Effectiveness

The efficiency and effectiveness of our scheme depends on the frequency of detec-

tion and resolution, which is determined by the stabilization period p.

3.3.3.1 Detection

The efficiency of collision detection is measured by the average time required to

detect a collision. This is defined as the period between a join and a stabilization

procedure that detects the collision. It is desirable to detect collisions as soon as

possible to minimize the impact of collisions. Table 3.3 shows that the average

time to detect collisions increases as p increases. From the results, the ratio of

the collision detection time to the stabilization interval (p) is up to 104 times (i.e.

p = 120 seconds and K = 8, 000). This indicates that collision detection time is

significant.

p
V = 50, 000 V = 100, 000

K = 2, 000 K = 8, 000 K = 2, 000 K = 8, 000

30 1,265 186 288 61
60 3,211 2,849 1,764 4,236

120 5,955 9,635 5,557 12,526
240 9,281 22,070 6,960 23,646

Table 3.3: Average Time to Detect a Collision (in Seconds)

Table 3.4 shows the effectiveness of our scheme. Let β denote the ratio of the

number of collisions in the detect & resolve case to the number of collisions in the

without detect & resolve case. With frequent stabilization when p is 30 seconds,

β is less than 0.01, i.e. our scheme reduces the number of collisions by 99%. As p

increases, the effectiveness of the scheme decreases. However, even when p is 240

seconds, our scheme still reduces the number of collisions by at least 80%.

CHAPTER 3. HIERARCHICAL R-DHT 100

p
V = 50, 000 V = 100, 000

K = 2, 000 K = 8, 000 K = 2, 000 K = 8, 000

30 0.01 0.01 0.01 0.01
60 0.02 0.01 0.02 0.03

120 0.18 0.08 0.08 0.11
240 0.18 0.15 0.13 0.20

Table 3.4: Ratio of Number of Collisions (β)

3.3.3.2 Resolution

There are two main factors that affect the cost of collision resolutions. The first

factor is the number of groups and nodes to be merged. Table 3.5 shows the

average number of nodes corrected in each collision resolution. The effectiveness

of collision resolution improves with a higher frequency of stabilization. Overall,

our results indicate that the average number of nodes corrected can be reduced to

less than 10% of the average group size (V/K).

p
V = 50, 000 V = 100, 000

K = 2, 000 K = 8, 000 K = 2, 000 K = 8, 000

30 2.2 2.1 3.2 2.1
60 2.9 2.5 3.1 2.3

120 3.6 4.0 7.2 3.6
240 7.0 4.9 11.8 6.2

Table 3.5: Average Number of Nodes Affected by a Collision

The second factor is the overhead of correcting stale finger pointers and the cost

of updating fingers to point to the new group after merging. As each group is

pointed by O(log KC) groups and the correction of each finger pointer requires

O(log KC), the total cost to update the fingers pointing to the merged group is

O(log2 KC).

The results in this section, i.e Tables 3.3–3.5, suggest that the efficiency and

CHAPTER 3. HIERARCHICAL R-DHT 101

effectiveness of our scheme can be improved by having more frequent detections

and resolutions. This will reduce both the number of collisions and the cost of

correcting collisions. Based on the simulation results in Table 3.2, with p = 60

seconds, the number of collisions is smaller than 12% of the ideal size (when

V = 100, 000 and K = 2, 000).

3.4 Summary

We have presented a hierarchical R-DHT and a scheme to detect and resolve col-

lision of groups. A hierarchical R-DHT organizes nodes into a two-level overlay

network. It partitions stabilization among different overlays to speed-up each sta-

bilization process and reduces the number of stabilization messages in each overlay.

In the hierarchical R-DHT, the maintenance overhead of the top-level overlay is

O(K log2 K). However, collision of groups increases the size of the top-level over-

lay by a factor c, which increases the total number of stabilization messages by

Ω(c) times. Our scheme performs collision detection together with stabilization to

avoid introducing additional messages. Two approaches are proposed to resolve

collisions: supernode-initiated merging and node-initiated merging.

Our simulation results show that if collisions are not resolved, the size of the top-

level overlay increases more than twice. With our scheme, the number of collisions

is reduced by 80% at least. In addition, the size of the top-level overlay remains

close to the ideal size; otherwise it can be up to five times larger, which increases

the total number of stabilization messages by Ω(5) times. The results also reveal

the importance of minimizing collisions as it takes several stabilization rounds to

detect collisions. Thus, more frequent stabilization reduces collisions and keeps

the top-level overlay that is close to the ideal size.

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 102

Chapter 4

Midas: Multi-Attribute Range

Queries

DHT supports lookup with exact queries effectively (i.e. high result guarantee)

and efficiently (i.e. short lookup path length). An exact query locates resources

identified with a specific key. As an example, a query find files whose file name

= A.MP3 locates all files identified with a key of SHA1(A.MP3). Recently, sup-

porting efficient multi-attribute range queries on DHT has been an active area

of research (see Section 1.3). A multi-attribute query locates resources identified

with multiple search attributes. Each search attribute can be constrained by a

range of values using relational operators (<, ≤, =, >, and ≤). As an example,

find compute resources whose cpu = P3 and 1 GB ≤ memory ≤ 2 GB is a query

consisting of two search attributes; the second search attribute, memory, has a

range of 1 GB.

We propose Midas (Multi-dimensional range queries), an approach to support

multi-attribute range queries on R-DHT based on d-to-one mapping scheme. We

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 103

focus on resources that are described by a well-defined schema, e.g. GLUE for

describing compute resources [5]. Midas adopts the Hilbert space-filling curve

(Hilbert SFC) [124] as the d-to-one mapping function because it has been shown

that for multi-dimensional indexing, it has a better clustering property than other

types of SFC [74, 103].

The rest of this chapter is organized as follows. First, we discuss the related work,

followed by an overview of Hilbert space-filling curve. Next, we discuss the design

of Midas indexing scheme, followed by two optimizations of the the query engine,

namely incremental search and search-key elimination. The performance of Midas

is evaluated using simulations. Finally, we conclude this chapter with a summary.

4.1 Related Work

We compare Midas with three main approaches in supporting multi-attribute

range queries on DHT, namely distributed inverted index, d-to-d mapping, and

d-to-one mapping (Section 1.3). We outline the rationale for choosing d-to-one as

the basis for supporting multi-attribute range queries in R-DHT.

Compared to distributed inverted index, d-to-one mapping does not need to per-

form the intersection operator (∩). The intersection operation assumes that one

or more intermediate results are created using selection operators (σ). However,

a selection operation incurs a higher overhead in R-DHT as it visits every node

within an R-DHT segment for creating an intermediate result. With d-to-one, Mi-

das avoids the intersection and thus, does not need to create intermediate result

sets. Figure 4.1 compares how Chord and R-Chord create an intermediate result

set consisting of resources whose cpu = P3. In Chord, resources whose cpu = P3

are indexed by a key of k = hash(P3). Thus, the select operation retrieves the

relevant indexes from successor(k) only. However, the same operation in R-Chord

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 104

retrieves the relevant indexes from all nodes in segment Sk.

(a) Chord: Retrieve Key k from
successor(k)

(b) R-Chord: Retrieve
Key k from All Nodes in
Segment Sk

Figure 4.1: Retrieving Result Set of Resource Indexes with Attribute cpu = P3

Compared to d-to-d mapping scheme, d-to-one mapping offers a higher flexibility

in selecting the underlying DHT. Because resources are mapped onto keys in a

one-dimensional identifier space, we can use one of the many implementations

of one-dimensional DHT [14, 17, 20, 68, 76, 99, 119, 122, 123, 133, 144] as the

underlying infrastructure. On the other hand, d-to-d mapping requires multi-

dimensional DHT which, to the best of our knowledge, is implemented only by

CAN [116].

A number of d-to-one mapping schemes have been proposed for DHT [16, 50,

86, 127, 131]. These schemes reduce the number of nodes visited during query

processing by exploiting data-item distribution. Though Midas is also based on

d-to-one mapping scheme, it is designed for R-DHT which does not distribute data

items. To reduce query cost, Midas transforms a query into a number of search

keys and performs R-DHT lookups only for available keys.

Table 4.1 summarizes the comparison of the three query processing schemes.

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 105

Factor
Distributed

Inverted
Index

d-to-d
d-to-one

General R-DHT

#keys/resource d one one one

Type of DHT any d-dimensional any any

Query engine ∩ and σ
flood query
region

exploit data-
item distribu-
tion

search-key
elimination

Table 4.1: Comparison of Multi-attribute Range Query Processing

4.2 Hilbert Space-Filling Curve

Let f : Nd → N denote a d-to-one mapping function which maps a d-dimensional

space to a one-dimensional space. The function is also referred to as a space-

filling curve (SFC) because it can be visualized as a curve (i.e. the one-dimensional

space) that traverses every coordinate in the d-dimensional space. A coordinate

in a d-dimensional space is a tuple of d dimension values. Figure 4.2 illustrates

two types of SFC, namely z-curve and Hilbert curve, on a 2-dimensional space

consisting of two axes, x-axis and y-axis. Each dimension consists of four values

from 0 to 3, resulting in a total of 16 coordinates (cells). SFC has been used in

various applications, including multi-dimensional indexing in traditional databases

[9, 45, 85, 115].

SFC allows every coordinate in a d-dimensional space to be assigned a unique

identifier. The curve is divided into subcurves such that a coordinate covered by

the ith subcurve, where i > 0, is assigned identifier i− 1. The curve traverses the

whole d-dimensional space where every coordinate is covered by one subcurve only;

this ensures all coordinates are assigned a unique identifier. Figure 4.2 shows that

coordinate (0, 0) has the same z-identifier and Hilbert identifier, which is 0, as it

is covered by the first subcurve of both SFC. On the other hand, coordinate (3,

3) has two different identifiers: 15 and 10 as its z-identifier and Hilbert identifier,

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 106

(a) z-Curve

(b) Hilbert Curve

Figure 4.2: SFC on 2-Dimensional Space

respectively.

In Chapter 4.2.1–4.2.2, we present the locality property of Hilbert SFC and the

recursive construction of a Hilbert curve.

4.2.1 Locality Property

An SFC preserves locality if coordinates close in the d-dimensional space are

mapped onto identifiers close in the one-dimensional space, and vice versa [61].

The locality property is desirable in many types of applications as it improves

their performance. In traditional database, preserving locality reduces the num-

ber of disk blocks to be fetched and seek time during query processing. Similarly,

in DHT, preserving locality reduces the number of nodes visited when a query

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 107

is processed. Gotsman et. al. [61] and Jagadish [74] reported that in general,

for any d′ < d it is not possible to always map two points that are close in a

d-dimensional space to two points that are close in a d′-dimensional space1. Re-

ferring to Figure 4.2, two adjacent coordinates, (1, 0) and (2, 0), are mapped onto

two identifiers that are further apart: 2 and 8 in z-curve, and 1 and 14 in Hilbert

curve, respectively.

Though achieving optimal locality is not possible, studies have indicated that

among various SFC, Hilbert SFC achieves better locality when applied to multi-

dimensional indexing [74, 103]. Intuitively, this is because two consecutive Hilbert

identifiers always connect two adjacent coordinate points. Jagadish [74] and Moon

et. al. [103] quantify the locality-preserving property using the number of clusters.

A cluster is a group of coordinate points, inside a d-dimensional region that are

mapped onto consecutive identifiers. The region represents a multi-dimensional

range query and is a subspace of a d-dimensional space. Using theoretical analysis

and simulation, Hilbert curve is shown to minimize the average number of clusters

compared to other types of SFC [74, 103].

Figure 4.3 shows a region, i.e. the shaded area, which is mapped by z-curve and

Hilbert curve. With z-curve, the region is covered by two clusters: the first cluster

consists of identifier 1 and the second cluster consists of identifers 3–7. With

Hilbert curve, the region is covered by one cluster only, which consists of identifiers

2–7.

4.2.2 Constructing Hilbert Curve

To construct a Hilbert curve, we recursively divide a d-dimensional space until L

approximation levels. At approximation level l, where 1 ≤ l ≤ L, we divide the

1In the case of SFC, d′ = 1.

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 108

(a) z-Curve: Region is Cov-
ered by Cluster 1 and Cluster
3–7

(b) Hilbert Curve: Region is
Covered by Cluster 2–7

Figure 4.3: Clusters and Region

d-dimensional space into 2dl cells. The lth-level SFC, which traverses the 2dl cells,

is constructed from a number of first-level curves, each of which being orientated

differently. Figure 4.4 shows an example of constructing Hilbert SFC that covers

a 2-dimensional space, up to approximation level 3. In this example, coordinate

of cells and Hilbert identifiers are shown in binaries. For Hilbert identifiers, the

decimal values are also shown in parentheses.

Figure 4.4a shows the level-1 curve which starts from coordinate (02, 12), i.e.

Hilbert identifier 02 (0), and ends at coordinate (12, 12), i.e. Hilbert identifier

012 (3). In Figure 4.4b, each level-1 cell is split into four cells and a level-1 Hilbert

curve, with a potentially different orientation, is applied on the four cells. For

example, the four lower-left cells are covered by a level-1 Hilbert curve that has

been rotated 270 degree along x-axis and mirrored along y-axis, whereas the four

lower-right cells are covered by a level-1 Hilbert curve that has been rotated 90

degree along x-axis. To construct the next level of Hilbert curve, (Figure 4.4c), we

follow the same process and then reuse level-2 curves. Thus, the eight lower-left

cells, for example, are covered by a level-2 Hilbert curve that has been rotated 270

degree along x-axis and mirrored along y-axis.

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 109

(a) Level 1 (b) Level 2

(c) Level 3

Figure 4.4: Constructing Hilbert Curve on 2-Dimensional Space

The recursive construction of Hilbert curve results in the following three properties.

Property 4.1. A cell at level l − 1 is refined into 2d subcells at level l.

Proof. The cell is a region where the length of its dimensions are equal to one.

The cell is refined to the next level by splitting each of its dimensions into two

halves. This results in 2d subcells in total. �

Based on Property 4.1, assuming that 1 ≤ l ≤ l′ ≤ L, a cell at level l is equivalent

to a region at level l′ region, i.e. a group of level-l′ cells. For example, the level-1

coordinate (02, 12) in Figure 4.4a, is equivalent to level-2 coordinates (002, 102),

(002, 112), (012, 112), and (012, 102) in Figure 4.4b.

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 110

Property 4.2. Dimension values at approximation level l are l-bit long, where

l > 0.

Proof. We prove this property by induction.

If l = 1, each dimension consists of two values. Thus, one bit is needed to encode

the values, and this proposition is true.

Assume that Pl−1 is true for 1 < l ≤ L, i.e. l − 1 bits are needed to encode

dimension values at level l − 1. We split each dimension value at level l − 1 into

two subvalues at level l. Each level-l value is prefixed by the (l − 1)-bit value of

its parent, and has one additional bit (0 or 1). Thus, this property is true. �

In Figure 4.4, the prefix of dimension values is shown in bold. Consider an example

where the first-level cell (02, 12), i.e. the shaded area in Figure 4.4a, is divided into

four second-level subcells, i.e. the shaded area in Figure 4.4b. At the second-level

cells, the possible values for x-axis are derived by concatenating the x-value of the

parent cell with 0 and 1. The similar process applies for y-axis as well.

Property 4.3. Hilbert identifiers at approximation level l are dl-bit long.

Proof. Since there are 2dl level-l coordinates to map, dl bits are required to encode

all the coordinates.

When a cell at level l − 1 is refined into 2d cells at the next level, the subcurve

that covers the parent cell are also refined into a 2d contiguous subcurve at level l.

The resulted identifiers at level l are prefixed by their parent’s Hilbert identifier.�

In Figure 4.4, the prefix of Hilbert identifiers is underlined. In the example, when

the first-level cell (02, 12) with Hilbert identifier 012 (Figure 4.4a) is refined into

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 111

four second-level cells, the resulted second-level Hilbert identifiers are 01002, 01012,

01102, and 01112; all of which are prefixed by the parent cell’s Hilbert identifier,

012 (Figure 4.4b).

4.3 Design

As illustrated in Figure 4.5, Midas is divided into two main parts, namely indexing

scheme and query engine. Each d-attribute resource is indexed as a key which is

a Hilbert identifier. The key is further mapped onto an R-DHT node. A multi-

attribute range query is first transformed into a number of exact queries using

Hilbert SFC. These exact queries are further processed by the query engine to

minimize the number of R-DHT lookups required.

Figure 4.5: Midas Indexing and Query Processing

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 112

4.3.1 Multi-Attribute Indexing

Midas indexing consists of three basic components as shown in Figure 4.6. Firstly,

it extracts the type of a resource, i.e. attributes of the resource (Definition 2.1),

using two supporting components: resource type specification and attribute-value

normalization. The resource type specification defines d attributes that constitute

a resource type, e.g. attribute cpu and attribute memory. Then, the attribute-

value normalization converts domain-specific attribute values into numbers, e.g.

(cpu=‘P4 ’, memory=‘1 GB ’) is normalized into resource type (cpu=2, memory=1).

Once the type of a resource is derived, the d-to-one mapping maps the resource

type onto a key using Hilbert SFC. Subsequently, the key is mapped onto an

R-DHT node.

Figure 4.6: Midas Multi-dimensional Indexing

In the rest of this section, we first describe the d-to-one mapping, followed by the

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 113

two supporting components.

4.3.1.1 d-to-one Mapping Scheme

Based on its type, each resource is assigned a key which is a Hilbert identifier at

the maximum approximation level. All resources are assumed to have the same

number of attributes. These attributes can be derived based on a well-defined

resource naming scheme such as GLUE schema [5] for compute resources (see

Section 4.3.1.2 for more details).

Definition 4.1. Let d denote the number of dimensions and m denotes the bit

length of one-dimensional identifier space. A key in the identifier space is defined

as an m-bit Hilbert code at the maximum approximation level L where L = m/d.

Each resource is modeled as a point in a d-dimensional attribute space. The

coordinate is determined by the resource type which consisting of d attributes.

Each dimension represents an attribute encoded as an (m/d)-bit value, and thus,

there are 2m/d possible values per dimension (Figure 4.7). The m-bit Hilbert

identifier of the coordinate will become the key assigned to the resource. Because

the coordinate of a resource is determined by the resource type, resources of the

same type occupies the same coordinate point and are assigned the same key

(Definition 2.1). Finally, the key is mapped onto an R-DHT node using our read-

only mapping scheme (Section 2.3.1–2.3.2).

The following example illustrates the process of indexing resources characterized

by two attributes, namely cpu and memory, assuming m = 4-bit.

• Assign Key to Resource

As illustrated in Figure 4.8a, resource r with cpu = P4 and memory = 1

GB is modeled as coordinate point (2, 1) in a 2-dimensional attribute space.

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 114

Figure 4.7: Attributes and Key

The coordinate is derived by normalizing2 the two attributes into a resource

type consisting of two attributes, namely cpu = 2 and memory = 1.

Using Hilbert SFC, coordinate (2, 1) is converted to Hilbert identifier 13

which is 4-bit long. Thus, r is assigned key k = 13.

• Map Key onto R-DHT Node Identifier

Assume that r is shared by host h. According to Definition 2.2, key 13

∈ Th and the key is associated with node n = 13|h (Figure 4.8b). If key

13 represents a new resource type of host h, then node joins an R-Chord

overlay and occupies segment S13 (Figure 2.8 and Theorem 2.7). Otherwise,

no new node is created on the overlay (Corollary 2.1).

4.3.1.2 Resource Type Specification

The resource type specification defines d indexing attributes, e.g. indexed columns

in traditional database, that constitute a resource type out of d′ resource attributes(d ≤

d′). There are several reasons to index resource only by a subset of resource at-

2See Section 4.3.1.3 for the details.

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 115

(a) Assign Key 13 to Resource r

(b) Map SFC Key 13 onto R-DHT Node 13|h

Figure 4.8: Example of Midas Indexing (d = 2 Dimensions and m = 4 Bits)

tributes. Firstly, keys are kept stable by excluding attributes that change fre-

quently. Otherwise, a resource must be re-assigned a new key when some of its

attributes change. Secondly, we need to ensure that an (m/d)-bit dimension is

sufficient to represent all possible values of an attribute. Thirdly, it has been

shown that for higher dimension, the locality property of Hilbert SFC decreases,

i.e. a higher number of clusters per query region [74, 103].

To include as many resource attributes as possible without significantly increasing

the dimensionality d, we can combine several resource attributes into one com-

pound attribute [86]. Consider a compound attribute (attr) that consists of i

member attributes. A value of this attribute, which corresponds to one of 2m/d di-

mension values, is denoted as a tuple of 〈member0, ..., memberi−1〉. To support range

queries, we impose an ordering on attr tuples where memberj must be logically

contained by memberk (j > k).

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 116

As an example, consider a compound attribute book with three member attributes

called chapter, section, and subsection. We define each value of this compound

attribute as a tuple of 〈chapter, section, subsection〉 since each subsection is

part of a section, and each section is part of a chapter. Assuming member at-

tributes are encoded as 2-bit values, each book tuple is encoded to a 6-bit dimen-

sion value derived by concatenating the three member attributes. Figure 4.9 shows

the first chapter, i.e. all tuples with chapter = 002, is encoded to dimension values

prefixed by 002 (i.e. dimension values 0–15). Similarly, the last section of the last

chapter, i.e. all tuples with chapter = 112 and section = 112, are encoded to

dimension values whose prefix is 11112 (i.e. dimension values 60–63).

Figure 4.9: Dimension Values for Compound Attribute book

Table 4.2 shows an example of resource type specification based on GLUE schema

[5] (Figure 4.10) to describe resource in a computational grid. We define a resource

type using five attributes, out of more than 20 as specified in GLUE schema. Each

of the attributes are modeled as a dimension with 32-bit long values. Thus, each

key (Hilbert identifier) is 160-bit, which is a typical value used in Chord and

several other DHT implementations. The specification includes two compound

attributes, namely OS and CPU, each of which consists of three and four member

attributes, respectively.

4.3.1.3 Normalization of Attribute Values

Each domain-specific attribute value is encoded as an (m/d)-bit length number

(i.e. dimension value). For example, attribute cpu may consist of the following

values: P3, P4, or SPARC. Each of these values is encoded as a number in the

range of 0 to 2m/d. To support range queries, the normalization encodes attribute

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 117

Figure 4.10: Sample XML Document of GLUE Schema

values i and j to dimension values f(i) and f(j) such that f(i) < f(j) if and only

if i < j. We outline three approaches for the normalization of domain-specific

attribute values.

1. Static Conversion

This approach converts each domain-specific attribute value to a predefined

dimension value, e.g. cpu = P4 is converted to dimension value 2. The

concept of static conversion has been applied in other fields as well. For

example, LINUX operating system allocates a predefined number and name

to each device, e.g. the first SCSI devices is allocated device number and

device name 0 and /dev/sda, respectively.

We can further extend the static conversion by mapping a group of attribute

values (e.g. all cpu from a particular vendor) to contiguous dimension val-

ues. The administrative authority responsible for the attribute values (e.g.

the manufacturer) manages the allocated range. This is analogous to the

allocation of IP addresses in networking.

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 118

Dimension
Length
(bit)

Description

Machine Count 32 Number of instances of the resource type

CPU Count 32 Number of processors per machine

Memory 32 Size of physical memory (multiplied by 256 MB)

OS 32 Operating system installed on a machine
Name 12
Release 10
Version 10

CPU 32 Processor type of a machine
Vendor 7
Architecture 5
Model 5
Clock Speed 15 CPU speed (multipled by 256 MHz)

Table 4.2: Resource Type Specification for Compute Resources based on GLUE
Schema

2. Locality-Preserving Hashing

A locality-preserving hash function [19, 28] is applied to each attribute

value to obtain the corresponding dimension value. With locality-preserving

hashing, similar attribute values are hashed onto dimension values that

are also similar. Locality-preserving hashing supports range queries since

i < j < k is hashed to dimension values that satisfy condition hash(i) <

hash(j) < hash(k). If we use non-locality-preserving hashing, the condition

hash(i) < hash(j) < hash(k) is not guaranteed.

3. Interval Mapping

For numerical attributes, attribute values can simply be divided into inter-

vals and each interval i is directly mapped onto a dimension value. Thus,

each dimension value represents an attribute value in a multiplicity of i.

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 119

4.3.2 Query Engine and Optimizations

A multi-attribute range query is transformed into search keys. A naive scheme

treats each search key as an exact query (i.e. a DHT lookup). This results in many

nodes visited during query processing. In Midas, we propose to minimize the

number of nodes visited by initiating lookups only for search keys that represent

available resources.

A multi-attribute range query specifies d search attributes where each of the at-

tributes can be constrained by a range. A range imposes a limit on a search

attribute using relational operators such as <, ≤, =, >, or ≤. After normaliz-

ing search attributes into dimension values, a query becomes a region in the d-

dimensional attribute space (Definition 4.2). For d = 2, a query region resembles

a rectangle and the number of search keys is equal to the area of the rectangle. For

d = 3 and d > 3, a query region resembles a cube and a hypercube, respectively;

the number of search keys is equal to the volume of the cube and the hypercube.

Definition 4.2. A query region (Q) is represented with the two endpoints of its

diagonal, namely Q.lo and Q.hi. Endpoint Q.lo refers to the smallest coordinate in

the query region, i.e. the coordinate where each dimension consists of the smallest

value in the range specified for the dimension. Similarly, endpoint Q.hi refers to

the largest coordinate in the query region.

Figure 4.11 shows an an example of a 2-attribute range query: find compute re-

sources with P3 ≤ cpu ≤ P4 and 1 GB ≤ memory ≤ 2 GB. The two ranges

specify by the query are 1–2 and 0–1 for dimension cpu and dimension memory,

respectively. The query region Q is illustrated as a shaded rectangle, where

Q.lo = (cpumin, memorymin) = (1, 0) and Q.hi = (cpumax, memorymax) = (2, 1).

Both Q.lo and Q.hi are not necessarily converted to the smallest and largest

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 120

Hilbert identifiers within the query region.

Figure 4.11: Range Query with Search Attributes cpu and memory

Each query is transformed into search keys, i.e. Hilbert identifiers assigned to all

coordinates in the query region. For example, the query region covered by the

shaded rectangle is transformed into four search keys grouped in two clusters,

namely cluster 1–2 and cluster 13–14. Each search key is considered as an exact

query. In a naive query processing, a query initiator (i.e. the user) issues one

lookup per search key. However, this is not efficient for the following reasons:

1. The naive search includes unnecessary lookups for search keys that do not

represent resources. Figure 4.12 shows two unnecessary lookups for search

keys 13 and 14, out of four lookups. Because search keys 13 and 14 do not

correspond to resources, there are no S13 and S14 in the underlying R-Chord

overlay. As a result, both the unnecessary lookups terminate at a different

segment, S15.

2. The naive search ignores the clustering property of Hilbert SFC. Since search

key 1 and 2 are clustered, the closer proximity between S1 and S2 can be

exploited by issuing only lookup(1) and letting S1 forward a request to S2.

To support efficient query processing, we propose an incremental search strategy

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 121

Figure 4.12: Naive Search Algorithm

that processes only available keys. A key is available if the resource type repre-

sented by the key consists of at least one resource instance. Figure 4.13 shows

Midas incremental search. After obtaining q, i.e. an ordered set of search keys

(line 2 in Figure 4.13a), the algorithm initiates lookup(k) for the lowest key k ∈ q

(line 4). This lookup will end-up at node n in segment Sk′ (line 5), where Sk′ is

the succeeding segment of k. If k′ = k then we add k (or the associated key-value

pair) to the result set, otherwise we discard k (line 3–9 in Figure 4.13b). Prior

to continuing the incremental search, we remove any search key k” that does not

correspond to any resources (line 10–11).

A search key is eliminated subject to one of the following conditions:

1. preceding segment(k) < k” < k′

We eliminate any unavailable key k” that precedes k′, i.e. key k” which is

within the left-side range of node n as shown in Figure 4.14. The reason is

that in R-DHT, Sk′ is the succeeding segment of k” (and k) only if k” does

not exist, otherwise the succeeding segment would be Sk”.

To quickly obtain the preceding segment, R-Chord lookup(k) can be modi-

fied to return not only the succeeding segment of k, but also the preceding

segment of k.

2. k′ < k” < succeeding segment(k′)

We eliminate any unavailable key k” that succeeds k′, i.e. k” is within the

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 122

1. h.mdq search(Query Q)
2. q = transform query region(Q.lo,Q.hi);
3. rs = {};
4. k = get min(q);
5. (n, p) = lookup(k);
6. return n.incr search(q, rs, p);

(a) Main Algorithm

1. n.incr search(List q, ResultSet rs, PreceedingSegment p)
2. //Check if h owns a key equals to the search key
3. k = get min(q);
4. Th = a set of keys in h;
5. for each y ∈ Th do
6. if y == k then
7. rs = rs ∪ {(k, n)};
8.
9. q = q − {k};

10. q = eliminate keys(q, p, prefix(n));
11. q = eliminate keys(q, prefix(n), prefix(succ seg));
12.
13. if q == {} then
14. return rs;
15.
16. //Search the next lowest key
17. k = get min(q);
18. (n′, p) = lookup(k);
19. return n′.incr search(q, rs, p);

20. // Eliminate keys in the range of [low, high)
21. n.eliminate keys(List q, Key low, Key high)
22. k = get min(q);
23. while k 6= nil and low < k < high do
24. q = q − {k};
25. k = get min(q);
26.
27. return q;

(b) Helper Functions

Figure 4.13: Midas Incremental Search Algorithm

right-side range of node n in Figure 4.14.

To quickly locate Sk′ , each node maintains a pointer to its succeeding seg-

ment. This new pointer can be considered as a finger and is put in the

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 123

finger table. The pointer is maintained through periodic stabilization. With

this new pointer, locating the succeeding segment of a node can be done by

simply examining the node’s finger table instead of issuing lookup((Sk+1)|0).

Figure 4.14: Search-Key Elimination

Figure 4.15 illustrates an example of incremental search for the query illustrated

in Figure 4.11. Given the four search keys, 1, 2, 13, and 14, Midas initiates a DHT

lookup for the lowest key 1. Since the lookup finds the key at segment S1, Midas

adds key 1 to the result set and continues with lookup(2). As this lookup arrives

at S2, Midas adds key 2 to the result set. Furthermore, it eliminates key 13 and 14

since the succeeding segment of S2 is S15. Thus, the final result set consists of two

keys: 1 and 2. To return faster results, query processing can be parallelized by

partitioning the search keys and performing one incremental search per partition.

Figure 4.15: Example of Range Query Processing

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 124

4.4 Performance Evaluation

Using simulation, we evaluate the performance of multi-attribute range queries on

DHT through simulations3. We first show the efficiency of Midas compared to the

naive query processing scheme, and the impact of underlying overlay (R-DHT and

conventional DHT) to the performance of Midas. Next, we study the impact of

data-item distribution on the performance of multi-attribute range queries. We

compare R-Chord-based Midas and Chord-based Midas and measure query cost,

query resiliency to node failures, and query performance under churn.

The implementation of Midas on Chord and R-Chord differs in the search-key

elimination algorithm:

1. Consider a lookup(k) request that ends up at node n (i.e. the successor of k).

Node n eliminates only search key k” where n.predecessor < k” < n; this is

similar to the first condition described in Section 4.3.2. However, n does not

eliminate the search key if n < k” < n.successor, which is equivalent to the

second condition in R-Chord, because Chord maps k” to n.successor. Since

n.successor is the responsible node of k”, it is the one who is responsible to

eliminate the key.

2. When eliminating key k”, node n also checks if key k” is actually available

and stored on it. If k” is available, it is added to the result set.

Unless stated otherwise, our experiments use the following parameters:

• d, the number of attributes per resource, is varied from 3 to 5. Each di-

mension is 6-bit long (m/d), and thus, is capable to hold 26 = 64 dimension

3Our simulator uses Lawder’s table-driven algorithm to perform the Hilbert mapping [84]. The
algorithm is applicable to arbitrary number of dimensions, in contrast to several earlier algo-
rithms [26, 36, 92] which are limited to 2-dimensional space. Recently, Jin et. al. [75] proposed
a table-driven framework capable of constructing different types of SFC.

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 125

values.

• m, the number of bits for keys and host identifiers, is 6d-bit.

• K, the number of unique keys (i.e. resource types), is varied from 5,000

to 150,000. This means, there are K points in the d-dimensional attribute

space. We generate these points using the normal distribution.

• N , the number of hosts, is varied from 25,000 to 50,000. Each host shares

T = 8 unique resource types on average (i.e. |Th| ∼ U [4, 12] unique resource

types), and each resource type may be offered for sharing by more than one

hosts.

• The size of a range query, i.e. the number of search keys, is ad where a (≤

2m/d) is a length parameter. Queries are classified based on their shape:

– Type 1, i.e. (a)d, are query regions where the length of each dimension

is a.

– Type 2, i.e. (0.5a)(2a)(a)d−2, are query regions where the length of the

first dimension and the second dimension are 0.5a and 2a, respectively,

while the length of the remaining dimension is a.

4.4.1 Efficiency

To study the improvement by Midas over the naive scheme, we compare the aver-

age number of nodes visited per query, i.e. responsible nodes, which store available

keys, and intermediate nodes. The naive scheme initiates one lookup per search

key, whereas Midas initiates lookups only for available keys. Both schemes use

R-Chord as the underlying overlay in a system comprising 25,000 hosts (N) . For

each value of length parameter a, we simulate 1,000 queries consisting of 500 type-

1 queries and 500 type-2 queries. Each query consists of Qskey (= ad) search keys

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 126

and Qakey (≤ Qskey) available keys. Table 4.3 presents the query profile and the

simulation results.

K a
d = 3 d = 4 d = 5

Qskey Qakey Qskey Qakey Qskey Qakey

5,000
4 64 7 256 1 1,024 0.1
8 512 56 4,096 13 32,768 3

16 4,096 442 65,536 206 1,048,576 97

50,000
4 64 46 256 8 1,024 1
8 512 375 4,096 125 32,768 29

16 4,096 3,058 65,536 2,068 1,048,576 379

(a) Query Profile

K a
d = 3 d = 4 d = 5

Naive Midas Naive Midas Naive Midas

5,000
4 337 27 1,391 21 5,654 18
8 2,697 115 22,381 85 182,151 73

16 21,672 627 360,068 533 5,870,126 499

50,000
4 403 75 1,828 53 7,365 39
8 3,243 474 29,440 344 238,941 245

16 25,922 3,386 471,964 3,267 6,431,520 2,670

(b) Average Number of Nodes Visited per Query

Table 4.3: Performance of Query Processing in Naive Scheme vs Midas

The result in Table 4.3b shows that Midas is more efficient than the naive scheme

in processing multi-attribute range queries, because Midas initiates lookups only

for available keys. Our result reveals that the number of nodes visited in Midas

is at least five times (i.e. d = 3, K = 50, 000, and a = 4) smaller than the naive

scheme. In the naive scheme, the cost is determined by the size of the query region,

i.e. Ω(Qskey). Because one R-Chord lookup is initiated per search key and each

lookup visits O(min(log K, log N)) nodes according to Theorem 2.2, the number of

nodes visited for each query is O(Qskey min(log K, log N)). On the other hand, the

cost of query processing in Midas is determined by the number of available keys

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 127

(Qakey) which is less Qskey. Because Midas looks up only for the available keys, the

number of nodes visited is at least Qakey. In addition, due to incremental search,

the cost of the initial lookup (for the smallest search key) becomes insignificant as

Qakey increases. Thus, the number of nodes visited per query is Ω(Qakey).

4.4.2 Cost of Query Processing

The impact of data-item distribution on Midas query processing cost is evaluated

using both Chord and R-Chord. The query processing cost is measured using the

average number of nodes visited per query. We simulate 10,000 type-1 queries

and 10,000 type-2 queries on system with 25,000 to 50,000 hosts. The size of each

query is kept constant at Qskey = 16d. Table 4.4 shows the query profile in terms

of the number of available keys per query (Qakey), and the simulation results.

Table 4.4b shows that the query cost in R-Chord-based Midas is affected by K,

whereas Chord-based Midas is affected by N . Because each R-Chord node is

responsible for its own key only, the number of nodes visited is Ω(Qakey). As

Qakey increases when K is increased, so does the number of nodes visited. In

Chord, the number of nodes visited is Ω(Qcnode) where Qcnode denotes the number

of Chord nodes responsible for available keys. Due to data-item distribution,

each Chord node is responsible for one or more keys, and thus, Qcnode ≤ Qakey

(Figure 4.16). As N is increased, the value of Qcnode increases because available

keys are distributed to a higher number of Chord nodes. This is shown in Table 4.5

which compares Qcnode in Chord rings consisting of 25, 000 nodes (N25) and 50,000

nodes (N50). A similar observation regarding the performance of range queries on

conventional DHT has also been made by Cristina et. al. [128].

Though Table 4.4b shows that the query cost in R-Chord is higher than Chord

as K is increased, it does not contradict our earlier analysis on R-Chord lookup

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 128

K d = 3 d = 4 d = 5

5,000 445 211 95
7,500 668 325 150

10,000 879 432 199
15,000 1,271 643 299
25,000 1,938 1,042 475
50,000 3,057 2,066 953
75,000 3,416 2,897 1,359

100,000 3,388 3,572 1,669
125,000 3,206 4,070 1,929
150,000 2,992 4,510 2,137

(a) Average Number of Available
Keys per Query (Qskey = 16d Search
Keys)

N K
d = 3 d = 4 d = 5

Chord R-Chord Chord R-Chord Chord R-Chord

25,000

5,000 650 629 418 537 358 499
7,500 647 885 423 741 358 682

10,000 648 1,120 420 928 360 836
15,000 641 1,544 420 1,274 358 1,120
25,000 649 2,242 416 1,887 363 1,589
50,000 638 3,387 412 3,312 357 2,675
75,000 667 3,741 414 4,385 364 3,513

100,000 655 3,708 418 5,225 358 4,137
125,000 644 3,526 424 5,839 357 4,631
150,000 654 3,313 421 6,352 357 5,003

50,000

5,000 1,133 627 662 534 524 498
7,500 1,128 889 661 740 520 681

10,000 1,124 1,123 661 927 521 833
15,000 1,127 1,545 660 1,270 519 1,116
25,000 1,138 2,238 661 1,882 524 1,600
50,000 1,129 3,447 662 3,360 522 2,733
75,000 1,154 3,993 663 4,675 525 3,720

100,000 1,148 4,194 664 5,833 520 4,624
125,000 1,118 4,195 665 6,895 520 5,393
150,000 1,134 4,121 665 7,783 519 6,079

(b) Average Number of Nodes Visited

Table 4.4: Query Cost of Midas

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 129

Figure 4.16: Four Chord Nodes are Responsible for Twelve Search Keys

K
d = 3 d = 4 d = 5

N25 N50 N25 N50 N25 N50

5,000 222 296 92 118 47 55
7,500 271 383 114 149 58 71

10,000 310 453 129 173 67 83
15,000 351 553 147 205 79 101
25,000 407 677 168 247 95 125
50,000 457 817 195 302 112 157
75,000 499 895 207 331 126 176

100,000 493 911 216 347 128 187
125,000 478 889 226 362 131 195
150,000 483 902 225 369 135 200

Table 4.5: Qcnode

performance (Theorem 2.2) which states that the path length of each R-Chord

lookup is at most equal to Chord. Instead, the higher cost of query processing

in R-Chord is caused by a higher number of lookup operations (Table 4.6). As

stated earlier, one lookup is required to locate each responsible node, and the

number of responsible nodes in R-Chord (i.e. Qakey) is higher than Chord (i.e.

Qcnodes). However, the number of intermediate hops per R-Chord lookup4 is lower

4In both Chord and R-Chord, the number of intermediate hops per lookup decreases as K is
increased, which is explained as follows. The query cost in Chord and R-Chord is Ω(Qcnode)
and Ω(Qakey), respectively. Both Qcnode and Qakey, which also denote the number of nodes
responsible for query results, increase as K is increased. Given a constant size of overlay
network, a larger number of responsible nodes reduces the distance between responsible nodes.

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 130

N K
d = 3 d = 4 d = 5

Chord R-Chord Chord R-Chord Chord R-Chord

25,000

5,000 505 479 266 304 191 231
7,500 357 704 209 441 153 326

10,000 367 918 193 567 147 407
15,000 362 1,300 202 807 149 561
25,000 503 1,965 264 1,253 193 826
50,000 363 2,958 194 2,256 147 1,424
75,000 390 3,158 200 2,922 146 1,840

100,000 509 3,396 265 3,926 187 2,418
125,000 355 2,768 204 3,778 147 2,325
150,000 347 2,516 196 4,040 148 2,497

50,000

5,000 918 477 446 303 296 230
7,500 913 705 444 440 292 326

10,000 909 917 444 566 293 406
15,000 911 1,306 443 806 291 561
25,000 921 1,962 444 1,249 295 832
50,000 914 3,122 445 2,387 292 1,515
75,000 936 3,648 446 3,444 293 2,134

100,000 931 3,848 445 4,412 289 2,721
125,000 904 3,857 447 5,307 290 3,232
150,000 919 3,791 447 6,081 290 3,696

Table 4.6: Average Number of Lookups per Query (based on Table 4.4b)

than Chord for various d and K (Table 4.7). Overall, the results in Table 4.6–4.7

further emphasizes that the cost of query processing in R-Chord is higher due to

the absence of data-item distribution instead of the cost of each (primitive) lookup

operation.

The result in Table 4.7 also indicates sthat the clustering property of Hilbert SFC

becomes poorer as dimensionality d is increased. On higher dimensions, locality

preservation decreases where two resources that are semantically similar are as-

signed keys that are farther apart. These keys are further mapped onto responsible

nodes whose distance is farther apart; this increasing the number of intermediate

nodes per lookup. As a result, the path length of each lookup becomes longer and

the overall query cost increases.

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 131

N K
d = 3 d = 4 d = 5

Chord R-Chord Chord R-Chord Chord R-Chord

25,000

5,000 0.85 0.38 1.23 1.07 1.62 1.75
7,500 0.75 0.31 1.14 0.95 1.57 1.63

10,000 0.67 0.26 1.09 0.88 1.53 1.56
15,000 0.58 0.21 1.02 0.78 1.47 1.46
25,000 0.48 0.15 0.94 0.67 1.39 1.35
50,000 0.37 0.11 0.83 0.53 1.30 1.16
75,000 0.32 0.09 0.79 0.46 1.24 1.07

100,000 0.32 0.09 0.76 0.42 1.23 1.02
125,000 0.33 0.10 0.73 0.40 1.21 0.98
150,000 0.35 0.11 0.73 0.38 1.18 0.95

50,000

5,000 0.91 0.38 1.22 1.07 1.59 1.75
7,500 0.82 0.31 1.15 0.94 1.54 1.63

10,000 0.74 0.26 1.10 0.87 1.49 1.56
15,000 0.63 0.21 1.03 0.78 1.44 1.46
25,000 0.50 0.15 0.93 0.68 1.35 1.34
50,000 0.34 0.11 0.81 0.53 1.25 1.16
75,000 0.28 0.10 0.74 0.45 1.19 1.06

100,000 0.25 0.09 0.71 0.41 1.15 1.00
125,000 0.25 0.09 0.68 0.37 1.12 0.95
150,000 0.25 0.09 0.66 0.35 1.10 0.91

Table 4.7: Average Number of Intermediate Nodes per Lookup (based on Ta-
ble 4.4b)

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 132

Our evaluation raises two implications to consider in reducing the cost of R-DHT

query processing:

1. Combine Query Processing and Resource Accesses

An R-DHT implementation supports this feature by providing an API that

combines a lookup request and a resource-access request into a single request.

The query cost presented in Table 4.4b excludes the additional hops needed

by Chord to access resources once resource indexes have been found through

query processing. As illustrated in Figure 4.17a, Chord maps key k belonging

to node n onto another node n′. To access resource r that is assigned key k, a

user first locates k stored at n′ (step 1), before accessing r at node n (step 2).

The total number of hops to access all resources that match a query is equal

to Ω(Qakey). Therefore, the total cost in Chord-based Midas becomes the

sum of the query cost in Table 4.4b and Qakey (Table 4.4a). For example,

when N = 25, 000 hosts, K = 5, 000 unique keys, and d = 4 dimensions, the

total cost is 537 + 211 = 748 hops. R-Chord, on the other hand, allows a

user to access resources during query processing because resource r and its

key k are located at the same node (Figure 4.17b).

(a) Resource r and Key k
are Separated (Chord)

(b) Resource r and Key k
are Located at the Same
Node (R-Chord)

Figure 4.17: Locating Key and Accessing Resource in R-Chord and Chord

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 133

2. Distributing Data Items to Trusted Nodes

We have identified that data-item distribution reduces the cost of query

processing. Thus, introducing selective data-item distribution into R-DHT is

a logical choice in optimizing its range query processing. R-DHT facilitates

selective data-item distributions by grouping publicly-writable nodes in a

reserved segment (Appendix B). The reserved segment is essentially another

Chord ring embedded in a larger R-Chord ring. Query processing will search

only among these trusted nodes. Assuming that the number of nodes in the

reserved segment is denoted as Qcnode, the cost to locate available keys in

the reserved segment is Ω(Qcnode). Our experiment on Chord-based Midas

is an extreme case of selective data-item distributions, where every node in

the system is a trusted, writable node.

4.4.3 Resiliency to Node Failures

Query processing is resilient if it is able to locate available keys in the presence

of node failures. To evaluate query resiliency, we simulate range queries when

a percentage (F) of 25,000 hosts and 50,000 hosts fail simultaneously, and we

measure the percentage of available keys that are successfully retrieved. The

result shown in Table 4.8 shows that range-query resiliency is higher in R-Chord

where nearly all available keys are retrieved.

The result of this experiment is consistent with our findings on the R-DHT lookup

resiliency (Section 2.5.2). Because each R-Chord node is responsible only for its

own keys, when a node fails, only its own keys are affected. And by its design (i.e.

routing by segments and finger flexibility through backup fingers), R-Chord can

locate a key as long as there is at least one alive node still sharing the key. On

the other hand, Chord stores a key belonging to one node on another responsible

node. When the responsible node fails, Chord fails to locate the keys (i.e. resource

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 134

F K
d = 3 d = 4 d = 5

Chord R-Chord Chord R-Chord Chord R-Chord

25%

5,000 74 >99 64 >99 75 >99
7,500 68 >99 75 >99 74 >99

10,000 72 >99 68 >99 67 >99
15,000 70 >99 73 >99 72 >99
25,000 70 >99 65 >99 74 >99
50,000 76 >99 73 99 76 99
75,000 80 99 77 97 65 97

100,000 79 98 77 97 84 96
125,000 79 97 81 96 83 95
150,000 77 97 77 95 85 95

50%

5,000 28 96 30 95 33 95
7,500 31 97 33 96 33 95

10,000 28 97 31 96 35 96
15,000 22 97 27 96 26 95
25,000 34 98 33 97 36 96
50,000 39 97 35 94 43 93
75,000 36 93 39 89 32 88

100,000 39 89 43 84 49 82
125,000 47 86 52 81 42 78
150,000 41 83 51 74 28 75

(a) N = 25, 000 Hosts

Table 4.8: Percentage of Keys Retrieved under Simultaneous Node Failures

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 135

F K
d = 3 d = 4 d = 5

Chord R-Chord Chord R-Chord Chord R-Chord

25%

5,000 69 >99 72 >99 72 >99
7,500 73 >99 70 >99 66 >99

10,000 68 >99 65 >99 72 >99
15,000 71 >99 70 >99 71 >99
25,000 71 >99 70 >99 76 >99
50,000 72 >99 72 >99 74 >99
75,000 70 >99 69 >99 74 99

100,000 72 >99 77 99 74 99
125,000 73 99 75 98 72 98
150,000 77 99 74 98 75 97

50%

5,000 24 97 31 95 31 95
7,500 26 97 30 95 21 97

10,000 25 97 25 95 31 95
15,000 30 97 29 96 37 95
25,000 25 98 30 96 36 95
50,000 27 99 29 96 32 96
75,000 30 99 32 96 41 95

100,000 32 98 34 94 36 94
125,000 29 96 37 91 37 91
150,000 36 94 32 89 47 88

(b) N = 50, 000 Hosts

Table 4.8: Percentage of Keys Retrieved under Simultaneous Node Failures

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 136

indexes) stored on the responsible node, even if the originating node of the keys

(i.e. the node where the actual resources are located) is still alive.

4.4.4 Query Performance under Churn

To evaluate the performance range query processing under churn, we compare

Midas on R-Chord and Chord overlays that change dynamically. The procedure

is similar to the churn experiment in Section 2.5.4). We begin the experiments

by warming up 25,000 hosts. In the next one-hour period, we simulate churn

events (i.e. arrivals, fails, and leaves) produced by 25,000 hosts. Thus, there will

be N ∼ 25, 000 alive hosts at any time within this duration. During this one-

hour period, we also simulate a number of range query events, where the ratio of

arrive:fail:leave:query is set at 2:1:1:1. Assuming that these events follow a Poisson

distribution, we derive two rates to represent churn rate, λB = 5 events/second and

λG = 17 events/second, based on the measurements on peer life-time by Bhagwan

et. al. [25] and Gummadi et. al. [63], respectively (refer to Section 2.5.4 for details

of the derivation). Each node in the overlay invokes the finger correction every 60

seconds on average. Table 4.9 presents the percentage of available keys that are

successfully retrieved.

With the moderate churn rate (Table 4.9a), our result shows that R-Chord per-

forms reasonably well compared with Chord. Though R-Chord overlay is eight

times larger than Chord, the number of available keys retrieved in R-Chord is, at

most, 10% lower than Chord. With the high churn rate (Table 4.9a), the number

of keys retrieved in R-Chord is up to 25% lower than Chord. This result again

shows that R-DHT lookup performance under churn is influenced by finger flexi-

bility. When K is increased, finger flexibility is reduced, i.e. each segment in the

overlay consists of a small number of nodes (see Theorem 2.6). As there are not

enough stable nodes within each segment, the effectiveness of backup fingers is

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 137

K
d = 3 d = 4 d = 5

Chord R-Chord Chord R-Chord Chord R-Chord

5,000 98 98 98 98 98 98
7,500 98 98 96 98 98 97

10,000 96 97 97 97 96 97
15,000 95 96 95 98 96 95
25,000 94 95 95 93 95 93
50,000 91 91 90 88 91 89
75,000 95 87 92 86 93 81

100,000 95 86 96 81 90 87
125,000 90 88 98 87 92 80
150,000 94 87 98 77 93 83

(a) λB = 5 Events/Second

K
d = 3 d = 4 d = 5

Chord R-Chord Chord R-Chord Chord R-Chord

5,000 95 94 93 92 93 90
7,500 92 91 87 88 88 89

10,000 90 88 89 87 89 87
15,000 87 86 84 84 87 83
25,000 84 80 82 77 85 75
50,000 81 67 73 62 75 61
75,000 79 63 80 60 82 60

100,000 74 63 78 54 82 58
125,000 78 59 78 52 84 56
150,000 81 59 82 51 79 55

(b) λG = 17 Events/Second

Table 4.9: Percentage of Keys Retrieved under Churn (N ∼ 25, 000 Hosts)

reduced under churn because nodes have a higher number incorrect fingers (i.e.

fingers which point to incorrect segments). This leads to the resiliency of R-DHT,

which is due to segment-based overlay, is also reduced. However, in terms of the

number of keys retrieved, R-Chord can still retrieve at least half of available keys.

In summary, the performance of Midas under churn is mainly influenced by the

effectiveness of backup fingers. With a higher finger flexibility, i.e. a higher number

of nodes per segment, backup fingers is effective in increasing the resiliency of

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 138

routing by segment. However, when each segment has a small number of nodes,

our results implies that it is important for each node to maintain fingers pointing

to stable nodes. One approach to address this is by using a hierarchical R-DHT

where only stable nodes can become supernodes.

4.5 Summary

We have presented Midas, a scheme to support multi-attribute range queries on

R-DHT. Using Hilbert SFC, Midas assigns to each d-attribute resource a one-

dimensional key. In processing a range query, Midas performs search-key elimina-

tion to avoid issuing unnecessary lookups, and incremental search to exploit the

clustering property of Hilbert SFC. Due to its read-only property, R-DHT does

not need to send additional requests to access resources, as resources and its key

are co-located.

Performance evaluation of Midas is conducted through simulations, and the main

results are as follows.

Efficiency of Midas Compared to a naive scheme of query processing, Midas

significantly reduces the number of nodes visited in processing a multi-attribute

range query. To process a query consisting of Qskey search keys and Qakey (≤ Qskey)

answers, Midas visits Ω(Qakey) nodes whereas the naive scheme requires Ω(Qskey)

nodes. We further validate the efficiency of Midas through simulations. Our

experiments reveal that Midas is at least five times more efficient than the naive

scheme.

Cost of Query Processing We study the implication of data-item distributions

on the cost of query processing. For the same size of queries, the cost of query

processing in R-DHT is determined by the number of resource types (K). In

CHAPTER 4. MIDAS: MULTI-ATTRIBUTE RANGE QUERIES 139

contrast, in conventional DHT, the cost is determined by the number of nodes

(N). This indicates that (i) R-DHT is more suitable in applications where query

selectivity is much larger than the number of query answers, and (ii) relaxing node

autonomy through selective data-item distributions can improve the performance

of multi-attribute range queries in R-DHT.

Resiliency to Node Failures We show that using R-DHT as the underlying

overlay increases the resiliency of Midas without a need to replicate data items.

Our simulation result shows that nearly all available keys are located even when

50% of nodes fail simultaneously.

Query Performance under Churn In R-DHT, effective backup fingers are

crucial in increasing performance of query processing under churn. When there

are less finger flexibility to exploit, we highlight hierarchical R-DHT as a possible

solution where only stable nodes can be promoted into supernodes.

CHAPTER 5. CONCLUSION 140

Chapter 5

Conclusion

We conclude this thesis by summarizing our main contributions and highlight

several directions for future research to address the limitations of our proposed

scheme.

5.1 Summary

We have proposed a DHT-based system that does not distribute data items across

an overlay network. For a large distributed system consisting of many adminis-

trative domains, our proposed system addresses the issues of data-item ownership

and conflicting self-interest among different administrative domains. Figure 5.1

summarizes our proposed scheme which consists of two main parts: R-DHT and

Midas. R-DHT (Read-only DHT) is a new DHT abstraction that does not dis-

tribute data items across an overlay network. Two variants of R-DHT have been

proposed, namely flat R-DHT and hierarchical R-DHT. In addition, we highlighted

a hybrid scheme which allows selective data-item distributions in an R-DHT over-

lay network. Midas (Multi-dimensional range queries) supports multi-attribute

CHAPTER 5. CONCLUSION 141

range queries on R-DHT by exploiting a d-to-one mapping scheme. We have pre-

sented Midas’s indexing multi-attribute resources and Midas’s query engine. We

have also demonstrated that in addition to R-DHT, Midas is applicable to support

multi-attribute range queries on conventional DHT as well.

Figure 5.1: Multi-attribute Queries on R-DHT

In the following, we summarize our main contributions.

CHAPTER 5. CONCLUSION 142

Effective and Efficient R-DHT Lookup

A significance result in this thesis is to demonstrate that even without distributing

data items, the performance of R-DHT lookups is better than conventional DHT

in two areas:

1. Lookup Path Length

Although the size of R-DHT overlay is larger than conventional DHT, an

R-DHT lookup is as efficient as a DHT lookup due to the three proposed

optimizations, namely routing by segments and shared finger tables. Using

Chord as the underlying overlay graph, we have shown that the lookup path

length in Chord-based R-DHT is O(min(log K, log N)) hops (i.e. better than

Chord which is O(log N) hops), where N denotes the number of hosts and

K denotes the number of unique keys (i.e. unique resource types). Our

simulation results further confirm our theoretical analysis on R-DHT lookup

path length.

2. Lookup Resiliency to Node Failures

We have shown that R-DHT does not need to rely on active replication to

achieve high resiliency. Firstly, failure of a node does not affect data items

belonging to other nodes. Secondly, result of a lookup operation can be

found in a segment which consists of multiple nodes. To achieve high lookup

resiliency, we propose to exploit segment-based overlays through the backup

fingers scheme. Through simulation experiments, we have demonstrated

that both lookup operations and Midas query engine on R-DHT achieve a

higher result guarantee: nearly all available keys are found even when half

of nodes in an overlay network simultaneously fail.

CHAPTER 5. CONCLUSION 143

Collision Detection and Resolution in Hierarchical R-DHT

To address the higher maintenance overhead in a flat overlay network, we proposed

a hierarchical R-DHT, which collapses nodes within a segment into a second-level

overlay network. We also addressed the problem of group collisions in hierarchical

R-DHT. Collisions increase the size of the top-level overlay and in turn increase

the maintenance cost of the top-level overlay. To detect collisions, we proposed

a scheme whereby collision detections are performed together with stabilization

to avoid introducing additional messages. To resolve collisions, we proposed a

supernode-initiated and a node-initiated merging scheme.

Simulation analysis shows that our collision detection and resolution scheme is

more effective when stabilization is performed more frequently. With our scheme,

the number of collisions is reduced by 80% at least. In addition, the size of the

top-level overlay remains close to the ideal size; otherwise it can be two to five

times larger.

Support for Multi-Attribute Range Queries on R-DHT

We have proposed Midas, an approach to support multi-attribute range queries on

R-DHT based on d-to-one mapping scheme. The selection of d-to-one as the basis

of our solution, rather than distributed inverted index or d-to-d, is due to two main

reasons: R-DHT does not distribute data items and there is more research interest,

within the P2P community, on one-dimensional DHT compared to d-dimensional

DHT.

We described the multi-dimensional indexing scheme in Midas which assigns to

each multi-attribute resource a key derived using Hilbert SFC. We also proposed

two optimizations for the query engine in Midas, namely incremental search and

search-key elimination. Through simulation evaluations we have shown that Midas

CHAPTER 5. CONCLUSION 144

significantly reduces the number of nodes visited in processing a query, compared

to the naive R-DHT query processing.

Impact of Data-Item Distribution on Multi-Attribute Range

Queries

We have studied the implication of data-item distribution to the performance

of query processing. We compared the cost of query processing in two Midas

implementations: one on R-DHT and another on conventional DHT. Simulation

evaluations reveal two main observations:

1. Data-item distribution reduces the number of nodes visited in processing a

query.

The number of lookups per query is determined by the number of nodes

that are responsible for query results. In conventional DHT, each node is

a bucket with a number of unique keys, as opposed to R-DHT where each

node is a bucket of one unique key. Thus, the number of responsible nodes

in conventional DHT is lower than R-DHT. This reduces the query cost in

conventional DHT.

2. The higher cost of query processing in R-DHT is due to a higher number of

R-DHT lookups required, not the cost of each individual R-DHT lookup.

Based on this observation, we have highlighted possible optimizations to

reduce the cost of query processing in R-DHT, such as combining query

processing with resource accesses and selective data-item distribution.

Performance of R-DHT under Churn

We have studied the performance of query processing in R-DHT under churn.

Churn introduces inconsistencies to routing states maintained by nodes. From

CHAPTER 5. CONCLUSION 145

our simulation evaluations, we have observed that R-DHT achieves a higher result

guarantee when there are a higher number of nodes sharing resources of the same

type. With a higher number of nodes within a segment, the exploitation of finger

flexibility mitigates the impact of inconsistent node’s routing states on the number

of keys successfully retrieved. As such, the difference between R-DHT and conven-

tional DHT is negligible. However, when each resource type is provisioned only by

a small number of nodes, result guarantee in R-DHT is at most 20% worse than

conventional DHT. Thus, R-DHT is suitable for a system whereby many adminis-

trative domains share resources of the same type, but administrative domains are

willing to store only their own data items.

5.2 Future Works

We highlight several research directions for future work.

Selective Data-Item Distribution

An administrative domain who is willing to store data items belonging to other

administrative domains joins R-DHT as one node only and occupies a reserved seg-

ment (see Appendix B for details). The benefits of selective data-item distribution

include:

1. Selective data-item distribution improves the performance of multi-attribute

range queries because data-items are aggregated on a trusted node. This

reduces the number of lookups needed to retrieve all query result.

2. Selective data-item distribution facilitates replication of data items to a set

of trusted nodes. This improves availability of resources as every resource

is duplicated in different administrative domains. When the master copy a

resource is unavailable, R-DHT can locate the backup copies of the resource.

CHAPTER 5. CONCLUSION 146

3. Selective data-item distribution can address the load imbalance problem

where all lookups for a frequently-requested data item are routed to its

originating domain.

Further studies are needed to effectively exploit selective data-item distribution in

R-DHT and to evaluate its impact on R-DHT performance.

Another interesting area to explore is how to selectively distribute data-item with-

out reserving a reserved segment. The benefits of not requiring a reserved segment

include:

1. In our current scheme, an R-DHT implementation has to provide two lookup

interfaces: one to locate data items among read-only nodes, and another

to locate data items among read-write nodes (in the reserved segments).

Without a reserved segment, only one common lookup interface is required.

2. In our current scheme, when query results must be retrieved from both read-

write and read-only nodes, each query is processed twice: once to retrieve

keys from the reserved segment and once to retrieve keys from the remaining

segments. By removing the reserved segment, we can retrieve keys from both

set of nodes by processing each query only once.

A simple approach to remove the reserved segment is by exploiting host virtual-

izations. As illustrated in Figure 5.2, when host 5 stores a replicated version of

key 5, a new node 5|3 is created. However, this simple approach increases the size

of overlay network which in turns increases the maintenance overhead. Thus, a

better approach is needed.

Dynamic Routing-Table Size

Virtualization in R-DHT increases the size of its overlay network in terms of

number of nodes. We have proposed a hierarchical R-DHT scheme to partition

CHAPTER 5. CONCLUSION 147

Figure 5.2: Exploiting Host Virtualization to Selectively Distribute Data Items

the maintenance overhead into multiple overlay networks. Assume that N denotes

the number of hosts and K denotes the number of unique keys, the size of the

top-level overlay in a hierarchical R-DHT is K groups and its maintenance cost

is a function of K. However, when K > N , the maintenance cost can be further

reduced into a function of N , i.e. the maintenance cost in conventional DHT. A

possible solution to address this issue, which complements hierarchical R-DHT, is

to investigate a new scheme where each administrative domain adaptively adjusts

the number of fingers maintained. In this scheme, each administrative domain

approximate the size of the overlay network to determine the minimum number

finger required in order to support robust lookup with short lookup path length.

Caching of Data Items

Caching is a common technique to improve the lookup performance in DHT. From

the perspective of nodes, caching data items belonging to other nodes is volun-

tarily, as opposed to data-item distribution which is mandatory. Thus, caching

can be exploited to improve the lookup performance in R-DHT without violating

the storage-usage policy of a node. However, we need to address the problem of

data-item ownership due to malicious nodes. For example, a node can cache a

data item indefinitely by ignoring invalidation requests from the owner of data

items.

CHAPTER 5. CONCLUSION 148

Semi-Structured Overlay Networks

R-DHT allows node autonomy in placing their key-value pairs. However, a higher

degree of node autonomy is possible, in particular the autonomy in selecting neigh-

boring nodes in an overlay network [44]. In DHT, the neighbors of a node is deter-

mined by a structure overlay network, i.e. the overlay network resembles a graph

with a certain topology, and and the position of a node in an overlay network is

determined by the node identifier (Section 1.2).

Recently, semi-structured overlay topologies have been proposed [37, 126]. In

these schemes, nodes are free to choose its position in the overlay network and

its neighbors, as long as the overlay network exhibits a global property such as

a power-law network [126] or a square-root network [37]. Though both proposed

schemes claim a provable lookup path length, we believe that more works are

needed to improve these schemes. Firstly, percolation search [126] is based on

earlier observations that file sharing P2P systems are power-law networks [94, 121].

However, a recent study indicates that such systems are not power-law [134].

Secondly, square-root network [37] assumes that the popularity of data items is

known. However, the author does not describe how to measure the popularity of

every data item in a large scale P2P system.

APPENDIX A. READ-ONLY CAN 149

Appendix A

Read-Only CAN

In R-DHT, the identifier of a node is prefixed by the key shared by the node.

However, this property is not guaranteed in CAN [116] because CAN dynamically

changes the identifier of existing nodes when splitting a zone (Section 1.2.2). In

this chapter, we describe two R-CAN schemes, flat R-CAN (see also Section 2.3.1)

and hierarchical R-CAN (see also Section 3.2), whereby the dynamic zone splitting

guarantees that a node identifier is prefixed by a key shared by a node. Flat R-

CAN allows a zone to be split into two unequal-size subzones, whereas hierarchical

R-CAN allows several nodes to occupy the same zone. Subsequently, we make a

distinction between VIDs and node identifiers as stated in Definition A.1.

Definition A.1. Let n denote a node identified by an m-bit node identifier. The

i-bit VID of node n is defined as the i-bit prefix of n, where i ≤ m.

Based on Definition A.1, an m-bit node identifier is associated with m VIDs.

Figure A.1 illustrates four possible VIDs of a 4-bit node identifier.

APPENDIX A. READ-ONLY CAN 150

Figure A.1: VIDs of Node Identifier 11012

A.1 Flat R-CAN

The original CAN dynamically changes the location of nodes and as such, the

i-bit VID of a node may not be the same as the i-bit prefix of the node identifier.

As illustrated in Figure A.2, when node n′ arrives, a zone, which is occupied by

node n only, is split along x-dimension into two equal-size subzones; each node is

assigned one subzone. Nodes reflect their new subzone in their 3-bit VID, i.e. the

2-bit VID of n (before the splitting) concatenated by 0 or 1. However, this new

VID for n′ violates Definition A.1 because it does not match with the 3-bit prefix

of n’, which is 111.

(a) Zone Occupied by Node n whose
2-bit VID is 11

(b) 3-bit VID Assigned to n′ is not
Equal to 3-bit Prefix of n’

Figure A.2: Zone Splitting in CAN may Violate Definition A.1

Flat R-CAN solves the above problems as follows:

1. A node’s location in the Cartesian space is determined only by its (fixed)

APPENDIX A. READ-ONLY CAN 151

node identifier.

This is in contrast to the original CAN, where a new node chooses a random

initial location.

2. A zone can be split into unequal-size subzones.

3. We ignore a zone splitting along a particular dimension two nodes, i.e. one

existing node and one new node, occupy the same coordinate in the splitting

dimension.

When a zone splitting is ignored, we assigned to nodes their i-bit node-

identifier as their i-bit VID. Then, we continue to split the zone along a

different dimension until the i′-bit VID produced by the splitting, where

i′ > i, is equal to the i′-bit prefix of a node identifier.

As illustrated in Figure A.3a, the location occupied by node n is determined by

its node identifier. When node n′ with the same x-coordinate as n enters the zone,

splitting the zone along x-dimension is ignored (Figure A.3b). Thus, both nodes

are a 3-bit VID derived from their 3-bit node-identifier prefix. Afterwards, we split

the zone along y-dimension and assign a 4-bit VID to each node (Figure A.3c).

Because n and n′ have different a y-coordinate, two 4-bit VIDs are produced; these

VIDs are guaranteed to equal to the 4-bit prefix of n and n′.

Theorem A.1. Let node identifiers are m-bit long. The number of ignored zone

splittings is at most m− 1.

Proof. Assume that two node identifiers share the same (m − 1)-bit long prefix,

i.e. they differ in the least-significant bit only. Then, out of m VID owned by

each node, (m− 1) VID are shared between nodes. In R-CAN, the zone-splitting

process ignores the splittings that result in the same VID for both nodes. Thus,

m− 1 splitting are ignored.

APPENDIX A. READ-ONLY CAN 152

(a) Node Identifier Determines Coor-
dinates of a Node

(b) Zone Splitting along x-Dimension
is Ignored

(c) Continue Zone Splitting along y-
Dimension

Figure A.3: Zone Splitting in Flat R-CAN

In other words, given any two nodes, their coordinates must differ in at least one

dimension. When we split a zone, we ignore the splittings along dimensions in

which both nodes have the same coordinate. �

A.2 Hierarchical R-CAN

The primary difference between hierarchical R-CAN and flat R-CAN is that in

hierarchical R-CAN, a zone is either split to two equal-size subzones or none at

all. As illustrated in Figure A.4, splitting the zone along x-dimension into two

equal-size subzones results in an empty subzone. However, unlike flat R-CAN

which selects an alternative splitting dimension, hierarchical R-CAN simply does

APPENDIX A. READ-ONLY CAN 153

not split the zone. Instead, the zone is shared by both the original node n and

the new node n′. Thus, this zone can be considered as a group as in hierarchical

DHT. Nodes within this zone may be further organized as a second-level overlay

network.

(a) Empty Subzone (b) Two Nodes in One Zone

(c) Two Nodes in One Zone

Figure A.4: Zone Splitting in Hierarchical R-CAN

APPENDIX B. SELECTIVE DATA-ITEM DISTRIBUTION 154

Appendix B

Selective Data-Item Distribution

In Chapter 2, we have demonstrated how R-DHT supports node autonomy where

each node stores only its own data items. In this chapter, we extend R-DHT

to accommodate applications where some hosts may store data items belonging

to other hosts. Example of such hosts are DHT service providers [23] or MDS

servers [4] serving as yellow pages in a computational grid. Selective data-item

distribution also facilitates data-item replication in R-DHT.

To accommodate publicly-writable hosts, R-DHT restricts data-item distribution

within a reserved segment Sr (e.g. r could be 0 or 2m − 1). A publicly-writable

host (h) is virtualized into only one node (n) identified with r|h. A key is then

mapped and stored onto a node within Sr even if another node outside Sr is the

closest to the key. For example, R-Chord maps and stores key k onto node n = r|h

where r|h = successor(r|k); this can be further simplified as mapping key k to

publicly-writable host h where h = successor(k). Essentially, the selective data-

item distribution scheme emulates an m-bit node-identifier space within the 2m-

bit identifier space. Our selective data-item distribution reduces the maintenance

APPENDIX B. SELECTIVE DATA-ITEM DISTRIBUTION 155

overhead of R-DHT because each publicly-writable host increases the size of the

overlay network only by one node.

Figure B.1b shows the algorithm for a publicly-writable host joining the reserved

segment.

(a) Map Keys to Nodes only in Segment S0

1. // Host h joins segment Sr

2. // through an existing host e.
3. h.virtualize to reserve segment(e)
4. n = r|h;
5. n.join(e) // Chord’s protocol [133]

(b) Virtualize Host to Reserved Segment

Figure B.1: Relaxing Node Autonomy

Figure B.2 shows the algorithm for finding successor(k) in segment Sr. This

operation allows the mapping of a key onto a node in Sr (i.e. store operation) and

the retrieval of a key from segment Sr (i.e. lookup operation). The algorithm first

finds the reserved segment Sr if necessary (line 5), followed by finding successor(k)

in Sr (line 16 and 22). If no such node is found, i.e. k is beyond the last node in

Sr, R-Chord maps k onto successor(r|0), i.e. the first node in Sr (line 14 and 20).

APPENDIX B. SELECTIVE DATA-ITEM DISTRIBUTION 156

1. // Find successor(k) in segment Sr

2. h.find successor in rsegment(k)
3. n = r|h;
4.
5. if @n then
6. // Find Sr, as h is not publicly writable
7. h′ = lookup(r);
8. if h′ == NOT FOUND then
9. return NOT FOUND;
10. return h′.find successor in rsegment(k);
11.
12. if n < r|k ≤ n.successor then
13. // n is the predecessor of successor(k)
14. if prefix(n.successor) == r then
15. return n.successor;
16. return find successor(r|0); // See Figure 2.18b
17.
18. // Go to the nearest known predecessor of k
19. n′ = closest preceding node(r|k)
20. if prefix(n′) == r then
21. return n′.find successor in segment(k);
22. return n′.find successor(r|0); // See Figure 2.18b

Figure B.2: Lookup within Reserved Segment

REFERENCES 157

References

[1] Apache HTTP server. http://httpd.apache.org.

[2] The Chord Project. http://www.pdos.lcs.mit.edu/chord.

[3] EarthLink SIPShare. http://www.research.earthlink.net/p2p/.

[4] Globus toolkit – Information Service. http://www.globus.org/toolkit/

mds/.

[5] GLUE information model. http://glueschema.forge.cnaf.infn.it.

[6] Gnutella. http://www.gnutella.com.

[7] IEEE standard 1420.1-1995 (R2002), IEEE standard for information
technology–software reuse–data model for reuse library interoperability: Ba-
sic interoperability data model (BIDM). http://standards.ieee.org/

reading/ieee/std/se/1420.1-1995.pdf.

[8] Napster. http://www.napster.com.

[9] Oracle Spatial. http://www.oracle.com/technology/products/

spatial/index.html.

[10] P2Pwg: Peer-to-peer working group. http://p2p.internet2.edu.

[11] Qnext. http://www.qnext.com.

[12] Skype. http://www.skype.com.

[13] The voP2P project. http://vop2p.jxta.org.

[14] K. Aberer, P. Cudr-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt. P-Grid: A self-organizing structured p2p
system. SIGMOD Record, 32(2):29–33, September 2003.

[15] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman. Local
search in unstructured networks. Handbook of Graphs and Networks: From
the Genome to the Internet, pp. 295–316, January 2003.

http://httpd.apache.org
http://www.pdos.lcs.mit.edu/chord
http://www.research.earthlink.net/p2p/
http://www.globus.org/toolkit/mds/
http://www.globus.org/toolkit/mds/
http://glueschema.forge.cnaf.infn.it
http://www.gnutella.com
http://standards.ieee.org/reading/ieee/std/se/1420.1-1995.pdf
http://standards.ieee.org/reading/ieee/std/se/1420.1-1995.pdf
http://www.napster.com
http://www.oracle.com/technology/products/spatial/index.html
http://www.oracle.com/technology/products/spatial/index.html
http://p2p.internet2.edu
http://www.qnext.com
http://www.skype.com
http://vop2p.jxta.org

REFERENCES 158

[16] D. Agrawal, A. E. Abbadi, and S. Suri. Attribute-based access to distributed
data over P2P networks. Proc. of the 4th Intl. Workshop on Databases
in Networked Information Systems, pp. 244–263, Springer-Verlag, Japan,
March 2005.

[17] L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi. DKS (N, k, f): A family
of low communication, scalable and fault-tolerant infrastructures for P2P
applications. Proc. of the 3rd IEEE Intl. Symp. on Cluster Computing and
the Grid, pp. 344–350, IEEE Computer Society Press, Japan, May 2003.

[18] S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer content
distribution technologies. ACM Computing Surveys, 36(4):335–371, Decem-
ber 2004.

[19] A. Andrzejak and Z. Xu. Scalable, efficient range queries for grid information
services. Proc. of the 2nd Intl. Conf. on Peer-to-Peer Computing, pp. 33–40,
IEEE Computer Society Press, Sweden, September 2002.

[20] J. Aspnes and G. Shah. Skip Graphs. Proc. of the 14th Annual ACM-
SIAM Symp. on Discrete Algorithms, pp. 384–393, ACM/SIAM Press, USA,
January 2003.

[21] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addi-
son Wesley, 1999.

[22] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Stoica,
and M. Walfish. A layered naming architecture for the internet. Proc. of
ACM SIGCOMM, pp. 343–352, ACM Press, Germany, September 2004.

[23] H. Balakrishnan, S. Shenker, and M. Walfish. Peering peer-to-peer providers.
Proc. of the 4th Intl. Workshop on Peer-to-Peer Systems, pp. 104–114,
Springer-Verlag, USA, February 2005.

[24] D. Bauer, P. Hurley, R. Pletka, and M. Waldvogel. Bringing efficient ad-
vanced queries to distributed hash tables. Proc. of the 29th IEEE Intl. Conf.
on Local Computer Networks, pp. 6–14, IEEE Computer Society Press, USA,
November 2004.

[25] R. Bhagwan, S. Savage, and G. M. Voelker. Understanding availability. Proc.
of the 2nd Intl. Workshop on Peer-to-Peer Systems, pp. 256–267, Springer-
Verlag, USA, February 2003.

[26] G. Breinholt and C. Schierz. Algorithm 781: Generating Hilbert’s space-
filling curve by recursion. ACM Transactions on Mathematical Software,
24(2):184–189, June 1998.

[27] A. R. Butt, R. Zhang, and Y. C. Hu. A self-organizing flock of Condors.
Proc. of the ACM/IEEE SC2003 Conf. on High Performance Networking
and Computing, pp. 42, ACM Press, USA, November 2003.

REFERENCES 159

[28] M. Cai, M. Frank, J. Chen, and P. Szekely. MAAN: A Multi-Attribute Ad-
dressable Network for grid information services. Journal of Grid Computing,
2(1):3–14, 2004.

[29] M. Castro, M. Costa, and A. Rowstron. Performance and dependability of
structured peer-to-peer overlays. Proc. of the 2004 Intl. Conf. on Dependable
Systems and Networks, pp. 9–18, June 2004.

[30] M. Castro, M. Costa, and A. Rowstron. Should we build Gnutella on a
structured overlay? ACM SIGCOMM Computer Communication Review,
34(2):131–136, April 2004.

[31] M. Castro, M. Costa, and A. Rowstron. Debunking some myths about
structured and unstructured overlays. Proc. of 2nd Symp. on Networked
Systems Design and Implementation, pp. 85–98, USENIX Association, USA,
May 2005.

[32] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Se-
cure routing for structured peer-to-peer overlay networks. Proc. of the 5th
USENIX Symp. on Operating Systems Design and Implementation, pp. 299–
314, USENIX Association, USA, December 2002.

[33] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making
Gnutella-like P2P systems scalable. Proc. of ACM SIGCOMM, pp. 407–418,
ACM Press, Germany, August 2003.

[34] F. Chen, T. Repantis, and V. Kalogeraki. Coordinated media streaming and
transcoding in peer-to-peer system. Proc. of the 19th IEEE Intl. Parallel and
Distributed Processing Symp., pp. 56b, IEEE Computer Society Press, USA,
April 2005.

[35] A-H. Cheng and Y-J. Joung. Probabilistic file indexing and searching in
unstructured peer-to-peer networks. Proc. of the 4th IEEE Intl. Symp. on
Cluster Computing and the Grid, pp. 9–18, IEEE Computer Society Press,
USA, April 2004.

[36] A. J. Cole. Compaction techniques for raster scan graphics using space-filling
curves. The Computer Journal, 31(1):87–92, 1987.

[37] B. F. Cooper. Quickly routing searches without having to move content.
Proc. of the 4th Intl. Workshop on Peer-to-Peer Systems, pp. 163–172,
Springer-Verlag, USA, February 2005.

[38] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: Making backup cheap
and easy. Proc. of the 5th USENIX Symp. on Operating Systems Design and
Implementation, pp. 285–298, USENIX Association, USA, December 2002.

[39] L. P. Cox and B. D. Noble. Samsara: Honor among thieves in peer-to-peer
storage. Proc. of the 19th ACM Symp. on Operating Systems Principles, pp.
120–132, ACM Press, USA, October 2003.

REFERENCES 160

[40] A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems.
Proc. of the 22nd IEEE Intl. Conf. On Distributed Computing Systems, pp.
23–33, IEEE Computer Society Press, Austria, July 2002.

[41] Y. Cui and K. Nahrstedt. Layered peer-to-peer streaming. Proc. of 13th Intl.
Workshop on Network and Operating Systems Support for Digital Audio and
Video, pp. 162–171, ACM Press, USA, June 2003.

[42] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area
cooperative storage with CFS. Proc. of the 11th ACM Symp. on Operating
Systems Principles, pp. 202–215, ACM Press, Canada, October 2001.

[43] F. Dabek, B. Y. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. To-
wards a common API for structured peer-to-peer overlays. Proc. of the 2nd
Intl. Workshop on Peer-to-Peer Systems, pp. 33–44, Springer-Verlag, USA,
February 2003.

[44] N. Daswani, H. Garcia-Molina, and B. Yang. Open problems in data-sharing
peer-to-peer systems. Proc. of the 9th Intl. Conf. on Database Theory, pp.
1–15, Springer-Verlang, Italy, January 2003.

[45] F. K. H. A. Dehne, T. Eavis, and A. Rau-Chaplin. Parallel multi-dimensional
ROLAP indexing. Proc. of the 3rd Intl. Symp. on Cluster Computing and
the Grid, pp. 86–95, IEEE Computer Society Press, Japan, May 2003.

[46] P. Druschel and A. I. T. Rowstron. PAST: A large-scale, persistent peer-to-
peer storage utility. Proc. of the 8th Workshop on Hot Topics in Operating
Systems, pp. 75–80, IEEE Computer Society Press, Germany, May 2001.

[47] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann Publishers, 1999.

[48] M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing content
publication with Coral. Proc. of the 1st Symp. on Networked Systems Design
and Implementation, pp. 239–252, USENIX Association, USA, March 2004.

[49] V. Gaede and O. Günther. Multidimensional access methods. volume 30,
pp. 170–231, June 1998.

[50] P. Ganesan, B. Yang, and H. Garcia-Molina. One torus to rule them all:
Multi-dimensional queries in P2P systems. Proc. of the 7th Intl. Workshop
on the Web and Databases, pp. 19–24, France, June 2004.

[51] L. Garcés-Erice, E. W. Biersack, P. A. Felber, K. W. Ross, and G. Urvoy-
Keller. Hierarchical peer-to-peer systems. Proc. of the 9th Intl. Euro-Par
Conf., pp. 1230–1239, Springer-Verlag, Austria, August 2003.

[52] G. Ghinita and Y. M. Teo. An adaptive stabilization framework for dis-
tributed hash tables. Proc. of the 20th IEEE Intl. Parallel and Distributed
Processing Symp., IEEE Computer Society Press, Greece, April 2006.

REFERENCES 161

[53] A. Ghodsi, L. O. Alima, and S. Haridi. Low-bandwidth topology mainte-
nance for robustness in structured overlay networks. Proc. of 38th Hawaii
Intl. Conf. on System Sciences, pp. 302a, IEEE Computer Society Press,
USA, January 2005.

[54] A. Ghodsi, L. O. Alima, and S. Haridi. Symmetric replication for struc-
tured peer-to-peer systems. Proc. of the 3rd Intl. Workshop on Databases,
Information Systems and Peer-to-Peer Computing, pp. 12, Spinger-Verlag,
Norway, April 2005.

[55] The Boston Globe. Google subpoena roils the web: US effort raises pri-
vacy issues. http://www.boston.com/news/nation/articles/2006/01/

21/google subpoena roils the web?mode=PF, January 2006.

[56] O. D. Gnawali. A keyword-set search system for peer-to-peer networks.
Master’s thesis, Dept. of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, May 2002.

[57] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load
balancing in dynamic structured P2P systems. Proc. of INFOCOM, pp.
2253– 2262, IEEE Press, China, March 2004.

[58] P. B. Godfrey and I. Stoica. Heterogeneity and load balance in distributed
hash tables. Proc. of INFOCOM, pp. 596–606, IEEE Press, USA, March
2005.

[59] Google. Google’s opposition to the government’s motion to compel. http:

//googleblog.blogspot.com/pdf/Google Oppo to Motion.pdf, February
2006.

[60] Google. Response to the DoJ motion. http://googleblog.blogspot.com/
2006/02/response-to-doj-motion.html, February 2006.

[61] C. Gotsman and M. Lindenbaum. On the metric properties of discrete space-
filling curves. IEEE Transactions on Image Processing, 5(5):794–797, May
1996.

[62] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and
I. Stoica. The impact of DHT routing geometry on resilience and proximity.
Proc. of ACM SIGCOMM, pp. 381–394, ACM Press, Germany, August 2003.

[63] P. K. Gummadi, S. Saroiu, and S. Gribble. Measurement study of Napster
and Gnutella as examples of peer-to-peer file sharing systems. Multimedia
Systems Journal, 9(2):170–184, August 2003.

[64] A. Gupta, B. Liskov, and R. Rodrigues. Efficient routing for peer-to-peer
overlays. Proc. of 1st Symp. on Networked Systems Design and Implemen-
tation, pp. 113–126, USENIX Association, USA, March 2004.

http://www.boston.com/news/nation/articles/2006/01/21/google_subpoena_roils_the_web?mode=PF
http://www.boston.com/news/nation/articles/2006/01/21/google_subpoena_roils_the_web?mode=PF
http://googleblog.blogspot.com/pdf/Google_Oppo_to_Motion.pdf
http://googleblog.blogspot.com/pdf/Google_Oppo_to_Motion.pdf
http://googleblog.blogspot.com/2006/02/response-to-doj-motion.html
http://googleblog.blogspot.com/2006/02/response-to-doj-motion.html

REFERENCES 162

[65] I. Gupta, K. Birman, P. Linga, A. Demers, and R. V. Renesse. Kelips:
Building an efficient and stable P2P DHT through increased memory and
background overhead. Proc. of the 2nd Intl. Workshop on Peer-to-Peer
Systems, pp. 160–169, Springer-Verlag, USA, February 2003.

[66] Andreas Haeberlen, Alan Mislove, and Peter Druschel. Glacier: Highly
durable, decentralized storage despite massive correlated failures. Proc. of
2nd Symp. on Networked Systems Design and Implementation, pp. 143–158,
USENIX Association, USA, May 2005.

[67] M. Harren, J. M. Hellerstein, R. Huebsch, B.T.Loo, S. Shenker, and I. Sto-
ica. Complex queries in DHT-based peer-to-peer networks. Proc. of the
1st Intl. Workshop on Peer-to-Peer Systems, pp. 242–249, Springer-Verlag,
USA, March 2002.

[68] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman.
SkipNet: A scalable overlay network with practical locality properties. Proc.
of the 4th USENIX Symp. on Internet Technologies and Systems, pp. 113–
126, USENIX Association, USA, March 2003.

[69] H-C. Hsiao and C-T. King. A tree model for structured peer-to-peer proto-
cols. Proc. of the 3rd IEEE Intl. Symp. on Cluster Computing and the Grid,
pp. 336–343, IEEE Computer Society Press, Japan, May 2003.

[70] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and
I. Stoica. Querying the internet with PIER. Proc. of 29th Intl. Conf. on Very
Large Data Bases, pp. 321–332, Morgan Kaufmann Publishers, Germany,
September 2003.

[71] A. Iamnitchi. Resource Discovery in Large Resource-Sharing Environments.
PhD thesis, Dept. of Computer Science, The University of Chicago, Decem-
ber 2003.

[72] A. Iamnitchi, M. Ripeanu, and I. Foster. Locating data in (small-world?)
peer-to-peer scientific collaborations. Proc. of the 1st International Work-
shop on Peer-to-Peer Systems, pp. 232–241, Springer-Verlag, USA, March
2002.

[73] S. Iyer, A. I. T. Rowstron, and P. Druschel. Squirrel: a decentralized peer-to-
peer web cache. Proc. of the 21th ACM Symp. on Principles of Distributed
Computing, pp. 213–222, ACM Press, USA, July 2002.

[74] H. V. Jagadish. Linear clustering of objects with multiple attributes. Proc. of
the 1990 ACM SIGMOD Intl. Conf. on Management of Data, pp. 332–342,
ACM Press, USA, June 1990.

[75] G. Jin and J. Mellor-Crummey. SFCGen: A framework for efficient genera-
tion of multi-dimensional space-filling curve by recursion. ACM Transactions
on Mathematical Software, 31(1):120–148, March 2005.

REFERENCES 163

[76] M. F. Kaashoek and D. R. Karger. Koorde: A simple degree-optimal dis-
tributed hash table. Proc. of the 2nd Intl. Workshop on Peer-to-Peer Sys-
tems, pp. 98–107, Springer-Verlag, USA, February 2003.

[77] D. R. Karger and M. Ruhl. Diminished Chord: A protocol for heterogeneous
subgroup. Proc. of the 3rd Intl. Workshop on Peer-to-Peer Systems, pp.
288–297, Springer-Verlag, USA, February 2004.

[78] D. R. Karger and M. Ruhl. Simple, efficient load balancing algorithms
for peer-to-peer systems. Proc. of the 3rd Intl. Workshop on Peer-to-Peer
Systems, pp. 131–140, Springer-Verlag, USA, February 2004.

[79] F. B. Kashani and C. Shahabi. Criticality-based analysis and design of
unstructured peer-to-peer networks as “complex systems”. Proc. of the 3rd
IEEE Intl. Symp. on Cluster Computing and the Grid, pp. 351–358, IEEE
Computer Society Press, Japan, May 2003.

[80] K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and survey of grid
resource management systems for distributed computing. Intl. Journal of
Software, Practice and Experience, 32(2):135–164, February 2002.

[81] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. OceanStore:
An architecture for global-scale persistent storage. Proc. of the 9th Intl.
Conf. on Architectural Support for Programming Languages and Operating
Systems, pp. 190–201, ACM Press, USA, November 2000.

[82] J. B. Kwon and H. Y. Yeom. Distributed multimedia streaming over peer-to-
peer networks. Proc. of the 9th Intl. Euro-Par Conf., pp. 851–858, Springer-
Verlag, Austria, August 2003.

[83] M. Landers, H. Zhang, and K-L. Tan. Peerstore: Better performance by
relaxing in peer-to-peer backup. Proc. of the 4th Intl. Conf. on Peer-to-Peer
Computing, pp. 72–79, IEEE Computer Society Press, Switzerland, August
2004.

[84] J. K. Lawder. Using state diagrams for Hilbert curve mappings. Techni-
cal Report JL2/00, School of Computer Science and Information Systems,
Birkbeck College, University of London, August 2000.

[85] J. K. Lawder and P. J. H. King. Using space-filling curves for multi-
dimensional indexing. Proc. of the 17th British National Conf. on Databases:
Advances in Databases, pp. 20–35, Springer-Verlag, UK, July 2000.

[86] J. Lee, H. Lee, S. Kang, S. Choe, and J. Song. CISS: An efficient ob-
ject clustering framework for DHT-based peer-to-peer applications. Proc.
of VLDB Workshop On Databases, Information Systems and Peer-to-Peer
Computing, pp. 215–229, Spinger-Verlag, Canada, August 2004.

REFERENCES 164

[87] M. Leslie, J. Davies, and T. Huffman. Replication strategies for reliable
decentralised storage. Proc. of the 1st Workshop on Dependable and Sus-
tainable Peer-to-Peer Systems, pp. 740–747, IEEE Computer Society Press,
Japan, April 2006.

[88] J. Li, P. A. Chou, and C. Zhang. Mutualcast: An efficient mechanism
for content distribution in a peer-to-peer (P2P) network. Technical Report
MSR-TR-2004-100, Microsoft Research, Communication and Collaboration
Systems, September 2004.

[89] J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F. Kaashoek. Comparing
the performance of distributed hash tables under churn. Proc. of the 3rd
Intl. Workshop on Peer-to-Peer Systems, pp. 87–99, Springer-Verlag, USA,
February 2004.

[90] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek. Bandwidth-efficient man-
agement of DHT routing tables. Proc. of 2nd Symp. on Networked Systems
Design and Implementation, pp. 99–114, USENIX Association, USA, May
2005.

[91] W. Li, Z. Xu, F. Dong, and J. Zhang. Grid resource discovery based on a
routing-transferring model. Proc. of the 3rd Intl. Workshop on Grid Com-
puting, pp. 145–156, Springer-Verlag, USA, November 2002.

[92] X. Liu and G. Schrack. Encoding and decoding the Hilbert order. Software—
Practice and Experience, 26(12):1335–1346, December 1996.

[93] B. T. Loo, R. Huebsch, I. Stoica, and J. M. Hellerstein. The case for a hybrid
P2P search infrastructure. Proc. of the 3rd Intl. Workshop on Peer-to-Peer
Systems, pp. 141–150, Springer-Verlag, USA, February 2004.

[94] Q. Lv, P Cao, E. Cohen, K. Li, and S. Shenker. Search and replication
in unstructured peer-to-peer networks. Proc. of the 2002 Intl. Conf. on
Supercomputing, pp. 84–95, ACM Press, USA, June 2002.

[95] V. March and Y. M. Teo. Multi-attribute range queries on read-only DHT.
Proc. of the 15th Intl. Conf. on Computer Communications and Networks,
pp. 419–424, IEEE Communications Society Press, USA, October 2006.

[96] V. March, Y. M. Teo, H. B. Lim, P. Eriksson, and R. Ayani. Collision
detection and resolution in hierarchical peer-to-peer systems. Proc. of the
30th IEEE Conf. on Local Computer Networks, pp. 2–9, IEEE Computer
Society Press, Australia, November 2005.

[97] V. March, Y. M. Teo, and X. Wang. DGRID: A DHT-based grid resource
indexing and discovery scheme for computational grids. Proc. of the 5th Aus-
tralasian Symp. on Grid computing and e-Research, pp. 41–48, Australian
Computer Society Inc., Australia, January 2007.

REFERENCES 165

[98] E. P. Markatos. Tracing a large-scale peer to peer system: An hour in the life
of Gnutella. Proc. of the 2nd IEEE Intl. Symp. on Cluster Computing and
the Grid, pp. 65–74, IEEE Computer Society Press, Germany, May 2002.

[99] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer information
system based on the XOR metric. Proc. of the 1st Intl. Workshop on Peer-
to-Peer Systems, pp. 53–65, Springer-Verlag, USA, March 2002.

[100] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pryune,
B. Richard, S. Rollins, and Z. Xu. Peer-to-peer computing. Technical Report
HPL-2002-57, HP Laboratories Palo Alto, March 2002.

[101] A. Mislove and P. Druschel. Providing administrative control and autonomy
in structured peer-to-peer overlays. Proc. of the 3rd Intl. Workshop on Peer-
to-Peer Systems, pp. 162–172, Springer-Verlag, USA, February 2004.

[102] A. Mislove, A. Post, C. Reis, P. Willmann, P. Druschel, D. S. Wallach,
X. Bonnaire, P. Sens, J-M. Busca, and L. B. Arantes. POST: A secure,
resilient, cooperative messaging system. Proc. of the 9th Workshop on Hot
Topics in Operating Systems, pp. 61–66, IEEE Computer Society Press,
USA, May 2003.

[103] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis on the
clustering properties of the Hilbert space-filling curve. IEEE Transactions
on Knowledge and Data Engineering, 13(1):124–141, January 2001.

[104] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: A read/write
peer-to-peer file system. Proc. of 5th USENIX Symp. on Operating System
Design and Implementation, USENIX Association, USA, December 2002.

[105] K. Nakauchi, Y. Ishikawa, H. Morikawa, and T. Aoyama. Peer-to-peer key-
word search using keyword relationship. Proc. of the 3rd IEEE Intl. Symp.
on Cluster Computing and the Grid, pp. 359–366, IEEE Computer Society
Press, Japan, May 2003.

[106] Z. Németh and V. Sunderam. Characterizing grids: Attributes, definitions,
and formalisms. Journal of Grid Computing, 1(1):9–23, 2003.

[107] World Association of Newspapers. Google must pay! http://www.

wan-press.org/article9384.html?var recherche=google+news.

[108] World Association of Newspapers. Newspaper, magazine and book pub-
lishers organizations to address search engine practices. http://www.

wan-press.org/article9055.html, January 2006.

[109] F. D. Ngoc, J. Keller, and G. Simon. MAAY: a decentralized personalized
search system. Proc. of the IEEE/IPSJ Intl. Symp. on Applications and the
Internet, IEEE Computer Society Press, USA, January 2006.

http://www.wan-press.org/article9384.html?var_recherche=google+news
http://www.wan-press.org/article9384.html?var_recherche=google+news
http://www.wan-press.org/article9055.html
http://www.wan-press.org/article9055.html

REFERENCES 166

[110] S. J. Nielson, S. A. Crosby, and D. S. Wallach. A taxonomy of rational
attacks. Proc. of the 4th Intl. Workshop on Peer-to-Peer Systems, pp. 36–
46, Springer-Verlag, USA, February 2005.

[111] B. C. Ooi, Y. Shu, and K.L. Tan. Relational data sharing in peer-based data
management systems. SIGMOD Record, 32(1):59–64, March 2003.

[112] A. Oram. Peer-to-Peer: Harnessing the Power of Disruptive Technologies.
O’Reilly, 2001.

[113] V. Ramasubramanian and E. G. Sirer. Beehive: O(1) lookup performance for
power-law query distributions in peer-to-peer overlays. Proc. of 1st Symp.
on Networked Systems Design and Implementation, pp. 99–112, USENIX
Association, USA, March 2004.

[114] L. Ramaswamy, B. Gedik, and L. Liu. A distributed approach to node clus-
tering in decentralized peer-to-peer networks. IEEE Transaction on Parallel
and Distributed Systems, 16(9):814–829, September 2005.

[115] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer. In-
tegrating the UB-tree into a database system kernel. Proc. of 26th Intl.
Conf. on Very Large Data Bases, pp. 263–272, Morgan Kaufmann Publish-
ers, Egypt, September 2000.

[116] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scal-
able Content-Addressable Network. Proc. of ACM SIGCOMM, pp. 161–172,
ACM Press, USA, August 2001.

[117] S. Ratnasamy, I. Stoica, and S. Shenker. Routing algorithms for DHTs:
Some open questions. Proc. the 1st Intl. Workshop on Peer-to-Peer Systems,
pp. 45–52, Springer-Verlag, USA, March 2002.

[118] Reuters. WPP’s Sorrell sees Google as threat, opportunity.
http://today.reuters.com/news/articlebusiness.aspx?type=

media&storyid=nN01402884&imageid=&cap=, March 2006.

[119] S. Rhea, D. Geels, and T. Roscoe J. Kubiatowicz. Handling churn in a DHT.
Proc. of the USENIX, pp. 127–140, USENIX Association, USA, June 2004.

[120] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu. OpenDHT: A public DHT service and its uses. Proc.
of ACM SIGCOMM, pp. 73–84, ACM Press, USA, August 2005.

[121] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the Gnutella network:
Properties of large-scale peer-to-peer systems and implications for system
design. IEEE Internet Computing Journal, 6(1):50–57, January 2002.

[122] R. Rodrigues and C. Blake. When multi-hop peer-to-peer lookup mat-
ters. Proc. of the 3rd Intl. Workshop on Peer-to-Peer Systems, pp. 112–122,
Springer-Verlag, USA, February 2004.

http://today.reuters.com/news/articlebusiness.aspx?type=media&storyid=nN01402884&imageid=&cap=
http://today.reuters.com/news/articlebusiness.aspx?type=media&storyid=nN01402884&imageid=&cap=

REFERENCES 167

[123] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems. Proc. of IFIP/ACM
Intl. Conf. on Distributed Systems Platforms, pp. 329–350, Springer-Verlag,
Germany, November 2001.

[124] H. Sagan. Space-Filling Curves. Springer-Verlag, 1999.

[125] D. Sandler, A. Mislove, A. Post, and P. Druschel. FeedTree: Sharing mi-
cronews with peer-to-peer event notification. Proc. of the 4th Intl. Work-
shop on Peer-to-Peer Systems, pp. 141–151, Springer-Verlag, USA, February
2005.

[126] N. Sarshar, P. O. Boykin, and V. P. Roychowdhury. Percolation search in
power law networks: Making unstructured peer-to-peer networks scalable.
Proc. of the 4th Intl. Conf. on Peer-to-Peer Computing, pp. 2–9, IEEE Com-
puter Society Press, Switzerland, August 2004.

[127] C. Schmidt and M. Parashar. Flexible information discovery in decentralized
distributed systems. Proc. of the 12th IEEE Intl. Symp. on High Perfor-
mance Distributed Computing, pp. 226–235, IEEE Computer Society Press,
USA, June 2003.

[128] C. Schmidt and M. Parashar. Analyzing the search characteristics of space
filling curve-based indexing within the Squid P2P data discovery system.
Technical Report TR-276, Center for Advanced Information Processing
(CAIP), Rutgers University, December 2004.

[129] S. Shi, G. Yang, D. Wang, J. Yu, S. Qu, and M. Chen. Making peer-to-
peer keyword searching feasible using multi-level partitioning. Proc. of the
3rd Intl. Workshop on Peer-to-Peer Systems, pp. 151–161, Springer-Verlag,
USA, February 2004.

[130] J. Shneidman and D. C. Parkes. Rationality and self-interest in peer to peer
networks. Proc. of the 2nd Intl. Workshop on Peer-to-Peer Systems, pp.
139–148, Springer-Verlag, USA, February 2003.

[131] Y. Shu, B. C. Ooi, K-L. Tan, and A. Zhou. Supporting multi-dimensional
range queries in peer-to-peer systems. Proc. of the 5th Intl. Conf. on Peer-
to-Peer Computing, pp. 173–180, IEEE Computer Society Press, Germany,
August 2005.

[132] D. Spence and T. Harris. XenoSearch: Distributed resource discovery in
the XenoServer open platform. Proc. of the 12th IEEE International Symp.
on High Performance Distributed Computing, pp. 216–225, IEEE Computer
Society Press, USA, June 2003.

[133] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. Proc.
of ACM SIGCOMM, pp. 149–160, ACM Press, USA, August 2001.

REFERENCES 168

[134] D. Stutzbach, R. Rejaie, and S. Sen. Characterizing unstructured overlay
topologies in modern P2P file-sharing systems. Proc. of the 2005 Internet
Measurement Conf., pp. 49–62, USENIX Association, USA, May 2005.

[135] C. Tang, Z. Xu, and S.Dwarkadas. Peer-to-peer information retrieval using
self-organizing semantic overlay networks. Proc. of ACM SIGCOMM, pp.
175–186, ACM Press, Germany, August 2003.

[136] Y. M. Teo, V. March, and X. Wang. A DHT-based grid resource index-
ing and discovery scheme. Proc. of Singapore-MIT Alliance Annual Symp.,
Singapore, January 2005.

[137] R. Tian, Y. Xiong, Q. Zhang, B. Li, B. Y. Zhao, and X. Li. Hybrid overlay
structure based on random walks. Proc. of the 4th Intl. Workshop on Peer-
to-Peer Systems, pp. 152–162, Springer-Verlag, USA, February 2005.

[138] D. Tsoumakos and N. Roussopoulos. A comparison of peer-to-peer search
methods. Proc. of the Intl. Workshop on Web and Databases, pp. 61–66,
USA, June 2003.

[139] J. Xu. On the fundamental tradeoffs between routing table size and network
diameter in peer-to-peer networks. Proc. of INFOCOM, pp. 2177–2187,
IEEE Press, USA, March 2003.

[140] Z. Xu, R. Min, and Y. Hu. HIERAS: A DHT based hierarchical P2P routing
algorithm. Proc. of the 2003 Intl. Conf. on Parallel Processing, pp. 187–194,
IEEE Computer Society Press, Taiwan, October 2003.

[141] B. Yang and H. Garcia-Molina. Improving search in peer-to-peer networks.
Proc. of the 22nd IEEE Intl. Conf. On Distributed Computing Systems, pp.
5–14, IEEE Computer Society Press, Austria, July 2002.

[142] B. Yang and H. Garcia-Molina. Designing a super-peer network. Proc. of the
19th Intl. Conf. on Data Engineering, pp. 49–61, IEEE Computer Society
Press, India, March 2003.

[143] B. Y. Zhao, Y. Duan, L. Huang, A. D. Joseph, and J. Kubiatowicz. Brocade:
Landmark routing on overlay networks. Proc. of the 2nd Intl. Workshop on
Peer-to-Peer Systems, pp. 34–44, Springer-Verlag, USA, March 2002.

[144] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry: An infras-
tructure for fault-tolerant wide-area location and routing. Technical Re-
port UCB/CSD-01-1141, Computer Science Department, UC Berkeley, April
2001.

[145] C. Zhu, Z. Liu, W. Zhang, W. Xiao, Z. Xu, and D. Yang. Decentralized
grid resource discovery based on resource information community. Journal
of Grid Computing, 2(3):261–277, September 2004.

REFERENCES 169

[146] Y. Zhu, X. Yang, and Y. Hu. Making search efficient on Gnutella-like P2P
systems. Proc. of the 19th IEEE Intl. Parallel and Distributed Processing
Symp., pp. 56a, IEEE Computer Society Press, USA, April 2005.

	Abstract
	Acknowledgements
	Contents
	List of Symbols
	List of Figures
	List of Tables
	List of Theorems
	Introduction
	P2P Lookup
	Distributed Hash Table (DHT)
	Chord
	Content-Addressable Network
	Kademlia

	Multi-Attribute Range Queries on DHT
	Distributed Inverted Index
	d-to-d Mapping
	d-to-one Mapping

	Motivation
	Objective
	Contributions
	Thesis Overview

	Read-only DHT: Design and Analysis
	Terminologies and Notations
	Overview of R-DHT
	Design
	Read-only Mapping
	R-Chord
	Lookup Optimizations
	Routing by Segments
	Shared Finger Tables

	Maintenance of Overlay Graph

	Theoretical Analysis
	Lookup
	Overhead
	Cost Comparison

	Simulation Analysis
	Lookup Path Length
	Resiliency to Simultaneous Failures
	Time to Correct Overlay
	Lookup Performance under Churn

	Related Works
	Structured P2P with No-Store Scheme
	Resource Discovery in Computational Grid

	Summary

	Hierarchical R-DHT: Collision Detection and Resolution
	Related Work
	Varying Frequency of Stabilization
	Varying Size of Routing Tables
	Hierarchical DHT

	Design of Hierarchical R-DHT
	Collisions of Group Identifiers
	Collision Detection
	Collision Resolution
	Supernode Initiated
	Node Initiated

	Simulation Analysis
	Maintenance Overhead
	Extent and Impact of Collisions
	Efficiency and Effectiveness
	Detection
	Resolution

	Summary

	Midas: Multi-Attribute Range Queries
	Related Work
	Hilbert Space-Filling Curve
	Locality Property
	Constructing Hilbert Curve

	Design
	Multi-Attribute Indexing
	d-to-one Mapping Scheme
	Resource Type Specification
	Normalization of Attribute Values

	Query Engine and Optimizations

	Performance Evaluation
	Efficiency
	Cost of Query Processing
	Resiliency to Node Failures
	Query Performance under Churn

	Summary

	Conclusion
	Summary
	Future Works

	Appendices
	Read-Only CAN
	Flat R-CAN
	Hierarchical R-CAN

	Selective Data-Item Distribution
	References

