321 research outputs found

    Multi-Armed Bandits for Intelligent Tutoring Systems

    Get PDF
    We present an approach to Intelligent Tutoring Systems which adaptively personalizes sequences of learning activities to maximize skills acquired by students, taking into account the limited time and motivational resources. At a given point in time, the system proposes to the students the activity which makes them progress faster. We introduce two algorithms that rely on the empirical estimation of the learning progress, RiARiT that uses information about the difficulty of each exercise and ZPDES that uses much less knowledge about the problem. The system is based on the combination of three approaches. First, it leverages recent models of intrinsically motivated learning by transposing them to active teaching, relying on empirical estimation of learning progress provided by specific activities to particular students. Second, it uses state-of-the-art Multi-Arm Bandit (MAB) techniques to efficiently manage the exploration/exploitation challenge of this optimization process. Third, it leverages expert knowledge to constrain and bootstrap initial exploration of the MAB, while requiring only coarse guidance information of the expert and allowing the system to deal with didactic gaps in its knowledge. The system is evaluated in a scenario where 7-8 year old schoolchildren learn how to decompose numbers while manipulating money. Systematic experiments are presented with simulated students, followed by results of a user study across a population of 400 school children

    A Methodology for Discovering how to Adaptively Personalize to Users using Experimental Comparisons

    Full text link
    We explain and provide examples of a formalism that supports the methodology of discovering how to adapt and personalize technology by combining randomized experiments with variables associated with user models. We characterize a formal relationship between the use of technology to conduct A/B experiments and use of technology for adaptive personalization. The MOOClet Formalism [11] captures the equivalence between experimentation and personalization in its conceptualization of modular components of a technology. This motivates a unified software design pattern that enables technology components that can be compared in an experiment to also be adapted based on contextual data, or personalized based on user characteristics. With the aid of a concrete use case, we illustrate the potential of the MOOClet formalism for a methodology that uses randomized experiments of alternative micro-designs to discover how to adapt technology based on user characteristics, and then dynamically implements these personalized improvements in real time

    Beyond A/B Testing: Sequential Randomization for Developing Interventions in Scaled Digital Learning Environments

    Full text link
    Randomized experiments ensure robust causal inference that are critical to effective learning analytics research and practice. However, traditional randomized experiments, like A/B tests, are limiting in large scale digital learning environments. While traditional experiments can accurately compare two treatment options, they are less able to inform how to adapt interventions to continually meet learners' diverse needs. In this work, we introduce a trial design for developing adaptive interventions in scaled digital learning environments -- the sequential randomized trial (SRT). With the goal of improving learner experience and developing interventions that benefit all learners at all times, SRTs inform how to sequence, time, and personalize interventions. In this paper, we provide an overview of SRTs, and we illustrate the advantages they hold compared to traditional experiments. We describe a novel SRT run in a large scale data science MOOC. The trial results contextualize how learner engagement can be addressed through inclusive culturally targeted reminder emails. We also provide practical advice for researchers who aim to run their own SRTs to develop adaptive interventions in scaled digital learning environments

    Getting too personal(ized): The importance of feature choice in online adaptive algorithms

    Full text link
    Digital educational technologies offer the potential to customize students' experiences and learn what works for which students, enhancing the technology as more students interact with it. We consider whether and when attempting to discover how to personalize has a cost, such as if the adaptation to personal information can delay the adoption of policies that benefit all students. We explore these issues in the context of using multi-armed bandit (MAB) algorithms to learn a policy for what version of an educational technology to present to each student, varying the relation between student characteristics and outcomes and also whether the algorithm is aware of these characteristics. Through simulations, we demonstrate that the inclusion of student characteristics for personalization can be beneficial when those characteristics are needed to learn the optimal action. In other scenarios, this inclusion decreases performance of the bandit algorithm. Moreover, including unneeded student characteristics can systematically disadvantage students with less common values for these characteristics. Our simulations do however suggest that real-time personalization will be helpful in particular real-world scenarios, and we illustrate this through case studies using existing experimental results in ASSISTments. Overall, our simulations show that adaptive personalization in educational technologies can be a double-edged sword: real-time adaptation improves student experiences in some contexts, but the slower adaptation and potentially discriminatory results mean that a more personalized model is not always beneficial.Comment: 11 pages, 6 figures. Correction to the original article published at https://files.eric.ed.gov/fulltext/ED607907.pdf : The Thompson sampling algorithm in the original article overweights older data resulting in an overexploitative multi-armed bandit. This arxiv version uses a normal Thompson sampling algorith

    Online Optimization and Personalization of Teaching Sequences

    Get PDF
    International audienceIn this work we are focused on the tutoring model, that is, how to choose the activities that provide a better learning experience based on the estimation of the student competence levels and progression, and some knowledge about the cognitive and student model. We can imagine a student wanting to acquire many different skills, e.g. adding, subtracting and multiplying numbers. A teacher can help by proposing activities such as: multiple choice questions, abstract operations to compute with a pencil, games where items need to be counted through manipulation, videos, or others. The challenge is to decide what is the optimal sequence of activities that maximizes the average competence level over all skills
    • …
    corecore