3 research outputs found

    Guest Editorial: Introduction to the Special Issue on Advances in Smart and Green Transportation for Smart Cities

    Get PDF
    According to a recent UN report, continuing population growth and urbanization are expected to increase the world’s urban population by 2.5 billion people by 2050, with 2.9 billion extra vehicles. This massive growth in both population and number of vehicles, together with urban transformation and a trend toward mega cities, creates greater and more challenges for achieving smart transportation goals in smart cities. Therefore, new and more integrated modes of transportation, and environment friendly solutions are required to accommodate the rising demands of high liveability in smarter cities that offer safe, secure, affordable, reliable and sustainable transportation in old and new markets alike

    Participation of Electric Vehicle Aggregators in Wholesale Electricity Markets: Recent Works and Future Directions

    Get PDF
    Electric Vehicles are key to reducing carbon emissions while bringing a revolution to the transportation sector. With the massive increase of EVs in road networks and the growing demand for charging services, the electric power grid faces enormous system reliability and operation stability challenges. Demand and supply disparities create inconsistency in the smooth delivery of electrical power. As a potential solution, EVs and their charging infrastructure can be aggregated to prevent the unwanted effects on power systems and also facilitate ancillary services to the power grid. When not need for transportation purposes, EVs can leverage their batteries for power grid services by participating in the electricity market via mechanisms coordinated by system operators. Hence, the market participation of EV infrastructure can help alleviate the power grid stress during peak periods. However, further research is needed to demonstrate the multiple benefits to both EV owners and power grid operators. This paper briefly overviews the existing literature on market participation of EV aggregators, discuss associated challenges and needs, and propose research directions for future research

    The Strategies of EV Charge/Discharge Management in Smart Grid Vehicle-to-Everything (V2X) Communication Networks

    Get PDF
    Electric vehicles (EVs) are at the forefront of the revolutionized eco-friendly invention in the transportation industry. With automated metering infrastructure (AMI) communications in houses, smart EV charging stations, and smart building management systems in smart grid-oriented power system, EVs are expected to contribute substantially in overall energy planning and management both in the grid and the customer premises. This chapter investigates and provides an in-depth analysis on the charge/discharge management of EV in vehicle to home (V2H), vehicle to drive (V2D), vehicle to vehicle (V2V), vehicle to grid (V2G), vehicle-to-building (V2B), and grid to vehicle (G2V). The planning and control of energy exchange of EV is the main focus considering EV availability in multiple places during the daytime and in the evening. Indisputably, EV participating in V2G or V2H affects the state of charge (SOC) of EV battery, and therefore proper scheduled charge/discharge plan needs to be embraced. The structures of EV in various operation modes and approaches are presented for implementing the energy planning and charge/discharge management of EV in different operation modes. The simulation results demonstrate the effectiveness of the proposed charge/discharge management strategy and regulation of EV SOC in accordance with the energy management plan of EV owner
    corecore