46,965 research outputs found

    The urban real-time traffic control (URTC) system : a study of designing the controller and its simulation

    Get PDF
    The growth of the number of automobiles on the roads in China has put higher demands on the traffic control system that needs to efficiently reduce the level of congestion occurrence, which increases travel delay, fuel consumption, and air pollution. The traffic control system, urban real-time traffic control system based on multi-agent (MA-URTC) is presented in this thesis. According to the present situation and the traffic's future development in China, the researches on intelligent traffic control strategy and simulation based on agent lays a foundation for the realization of the system. The thesis is organized as follows: The first part focuses on the intersection' real-time signal control strategy. It contains the limitations of current traffic control systems, application of artificial intelligence in the research, how to bring the dynamic traffic flow forecast into effect by combining the neural network with the genetic arithmetic, and traffic signal real-time control strategy based on fuzzy control. The author uses sorne simple simulation results to testify its superiority. We adopt the latest agent technology in designing the logical structure of the MA-URTC system. By exchanging traffic flows information among the relative agents, MA-URTC provides a new concept in urban traffic control. With a global coordination and cooperation on autonomy-based view of the traffic in cities, MA-URTC anticipates the congestion and control traffic flows. It is designed to support the real-time dynamic selection of intelligent traffic control strategy and the real-time communication requirements, together with a sufficient level of fault-tolerance. Due to the complexity and levity of urban traffic, none strategy can be universally applicable. The agent can independently choose the best scheme according to the real-time situation. To develop an advanced traffic simulation system it can be helpful for us to find the best scheme and the best switch-point of different schemes. Thus we can better deal with the different real-time traffic situations. The second part discusses the architecture and function of the intelligent traffic control simulation based on agent. Meanwhile the author discusses the design model of the vehicle-agent, road agent in traffic network and the intersection-agent so that we can better simulate the real-time environment. The vehicle-agent carries out the intelligent simulation based on the characteristics of the drivers in the actual traffic condition to avoid the disadvantage of the traditional traffic simulation system, simple-functioned algorithm of the vehicles model and unfeasible forecasting hypothesis. It improves the practicability of the whole simulation system greatly. The road agent's significance lies in its guidance of the traffic participants. It avoids the urban traffic control that depends on only the traffic signal control at intersection. It gives the traffic participants the most comfortable and direct guidance in traveling. It can also make a real-time and dynamic adjustment on the urban traffic flow, thus greatly lighten the pressure of signal control in intersection area. To sorne extent, the road agent is equal to the pre-caution mechanism. In the future, the construction of urban roads tends to be more intelligent. Therefore, the research on road agent is very important. All kinds of agents in MA-URTC are interconnected through a computer network. In the end, the author discusses the direction of future research. As the whole system is a multi-agent system, the intersection, the road and the vehicle belongs to multi-agent system respectively. So the emphasis should be put on the structure design and communication of all kinds of traffic agents in the system. Meanwhile, as an open and flexible real-time traffic control system, it is also concerned with how to collaborate with other related systems effectively, how to conform the resources and how to make the traffic participants anywhere throughout the city be in the best traffic guidance at all times and places. To actualize the genuine ITS will be our final goal. \ud ______________________________________________________________________________ \ud MOTS-CLÉS DE L’AUTEUR : Artificial Intelligence, Computer simulation, Fuzzy control, Genetic Algorithm, Intelligent traffic control, ITS, Multi-agent, Neural Network, Real-time

    Perimeter Control with Heterogeneous Cordon Signal Behaviors: A Semi-Model Dependent Reinforcement Learning Approach

    Full text link
    Perimeter Control (PC) strategies have been proposed to address urban road network control in oversaturated situations by monitoring transfer flows of the Protected Network (PN). The uniform metering rate for cordon signals in existing studies ignores the variety of local traffic states at the intersection level, which may cause severe local traffic congestion and ruin the network stability. This paper introduces a semi-model dependent Multi-Agent Reinforcement Learning (MARL) framework to conduct PC with heterogeneous cordon signal behaviors. The proposed strategy integrates the MARL-based signal control method with centralized feedback PC policy and is applied to cordon signals of the PN. It operates as a two-stage system, with the feedback PC strategy detecting the overall traffic state within the PN and then distributing local instructions to cordon signals controlled by agents in the MARL framework. Each cordon signal acts independently and differently, creating a slack and distributed PC for the PN. The combination of the model-free and model-based methods is achieved by reconstructing the action-value function of the local agents with PC feedback reward without violating the integrity of the local signal control policy learned from the RL training process. Through numerical tests with different demand patterns in a microscopic traffic environment, the proposed PC strategy (a) is shown robustness, scalability, and transferability, (b) outperforms state-of-the-art model-based PC strategies in increasing network throughput, reducing cordon queue and carbon emission

    Improving Traffic Safety and Efficiency by Adaptive Signal Control Systems Based on Deep Reinforcement Learning

    Get PDF
    As one of the most important Active Traffic Management strategies, Adaptive Traffic Signal Control (ATSC) helps improve traffic operation of signalized arterials and urban roads by adjusting the signal timing to accommodate real-time traffic conditions. Recently, with the rapid development of artificial intelligence, many researchers have employed deep reinforcement learning (DRL) algorithms to develop ATSCs. However, most of them are not practice-ready. The reasons are two-fold: first, they are not developed based on real-world traffic dynamics and most of them require the complete information of the entire traffic system. Second, their impact on traffic safety is always a concern by researchers and practitioners but remains unclear. Aiming at making the DRL-based ATSC more implementable, existing traffic detection systems on arterials were reviewed and investigated to provide high-quality data feeds to ATSCs. Specifically, a machine-learning frameworks were developed to improve the quality of and pedestrian and bicyclist\u27s count data. Then, to evaluate the effectiveness of DRL-based ATSC on the real-world traffic dynamics, a decentralized network-level ATSC using multi-agent DRL was developed and evaluated in a simulated real-world network. The evaluation results confirmed that the proposed ATSC outperforms the actuated traffic signals in the field in terms of travel time reduction. To address the potential safety issue of DRL based ATSC, an ATSC algorithm optimizing simultaneously both traffic efficiency and safety was proposed based on multi-objective DRL. The developed ATSC was tested in a simulated real-world intersection and it successfully improved traffic safety without deteriorating efficiency. In conclusion, the proposed ATSCs are capable of effectively controlling real-world traffic and benefiting both traffic efficiency and safety

    CoLight: Learning Network-level Cooperation for Traffic Signal Control

    Full text link
    Cooperation among the traffic signals enables vehicles to move through intersections more quickly. Conventional transportation approaches implement cooperation by pre-calculating the offsets between two intersections. Such pre-calculated offsets are not suitable for dynamic traffic environments. To enable cooperation of traffic signals, in this paper, we propose a model, CoLight, which uses graph attentional networks to facilitate communication. Specifically, for a target intersection in a network, CoLight can not only incorporate the temporal and spatial influences of neighboring intersections to the target intersection, but also build up index-free modeling of neighboring intersections. To the best of our knowledge, we are the first to use graph attentional networks in the setting of reinforcement learning for traffic signal control and to conduct experiments on the large-scale road network with hundreds of traffic signals. In experiments, we demonstrate that by learning the communication, the proposed model can achieve superior performance against the state-of-the-art methods.Comment: 10 pages. Proceedings of the 28th ACM International on Conference on Information and Knowledge Management. ACM, 201
    • …
    corecore