10 research outputs found

    Tree-Structured Policy based Progressive Reinforcement Learning for Temporally Language Grounding in Video

    Full text link
    Temporally language grounding in untrimmed videos is a newly-raised task in video understanding. Most of the existing methods suffer from inferior efficiency, lacking interpretability, and deviating from the human perception mechanism. Inspired by human's coarse-to-fine decision-making paradigm, we formulate a novel Tree-Structured Policy based Progressive Reinforcement Learning (TSP-PRL) framework to sequentially regulate the temporal boundary by an iterative refinement process. The semantic concepts are explicitly represented as the branches in the policy, which contributes to efficiently decomposing complex policies into an interpretable primitive action. Progressive reinforcement learning provides correct credit assignment via two task-oriented rewards that encourage mutual promotion within the tree-structured policy. We extensively evaluate TSP-PRL on the Charades-STA and ActivityNet datasets, and experimental results show that TSP-PRL achieves competitive performance over existing state-of-the-art methods.Comment: To appear in AAAI202

    Location-aware Graph Convolutional Networks for Video Question Answering

    Full text link
    We addressed the challenging task of video question answering, which requires machines to answer questions about videos in a natural language form. Previous state-of-the-art methods attempt to apply spatio-temporal attention mechanism on video frame features without explicitly modeling the location and relations among object interaction occurred in videos. However, the relations between object interaction and their location information are very critical for both action recognition and question reasoning. In this work, we propose to represent the contents in the video as a location-aware graph by incorporating the location information of an object into the graph construction. Here, each node is associated with an object represented by its appearance and location features. Based on the constructed graph, we propose to use graph convolution to infer both the category and temporal locations of an action. As the graph is built on objects, our method is able to focus on the foreground action contents for better video question answering. Lastly, we leverage an attention mechanism to combine the output of graph convolution and encoded question features for final answer reasoning. Extensive experiments demonstrate the effectiveness of the proposed methods. Specifically, our method significantly outperforms state-of-the-art methods on TGIF-QA, Youtube2Text-QA, and MSVD-QA datasets. Code and pre-trained models are publicly available at: https://github.com/SunDoge/L-GC
    corecore