41,151 research outputs found

    Multi-advisor deep reinforcement learning for smart home energy control

    Get PDF
    Effective automated smart home control is essential for smart-grid enabled approaches to demand response, named in the literature as automated demand response. At itā€™s heart, this is a multi-objective adaptive control problem because it requires balancing an applianceā€™s primary objective with demandresponse motivated objectives. This control problem is difficult due to the scale and heterogeneity of appliances as well as the time-varying nature of both dynamics and consumer preferences. Computational considerations further limit the types of acceptable algorithms to apply to the problem. We propose approaching the problem under the multi-objective reinforcement learning framework. We suggest a multi-agent multi-advisor reinforcement learning system to handle the consumerā€™s time-varying preferences across objectives. We design some simulations to produce preliminary results on the nature of user preferences and the feasibility of multi-advisor reinforcement learning. Further smarthome simulations are designed to demonstrate the linear scalability of the algorithm with respect to both number of agents and number of objectives. We demonstrate the algorithms performance in simulation against a comparable centrallized and decentrallized controller. Finally, we identify the need for stronger performance measures for a system of this type by considering the effect on agents of newly selected preferences

    Basal-Bolus Advisor for Type 1 Diabetes (T1D) Patients Using Multi-Agent Reinforcement Learning (RL) Methodology

    Full text link
    This paper presents a novel multi-agent reinforcement learning (RL) approach for personalized glucose control in individuals with type 1 diabetes (T1D). The method employs a closed-loop system consisting of a blood glucose (BG) metabolic model and a multi-agent soft actor-critic RL model acting as the basal-bolus advisor. Performance evaluation is conducted in three scenarios, comparing the RL agents to conventional therapy. Evaluation metrics include glucose levels (minimum, maximum, and mean), time spent in different BG ranges, and average daily bolus and basal insulin dosages. Results demonstrate that the RL-based basal-bolus advisor significantly improves glucose control, reducing glycemic variability and increasing time spent within the target range (70-180 mg/dL). Hypoglycemia events are effectively prevented, and severe hyperglycemia events are reduced. The RL approach also leads to a statistically significant reduction in average daily basal insulin dosage compared to conventional therapy. These findings highlight the effectiveness of the multi-agent RL approach in achieving better glucose control and mitigating the risk of severe hyperglycemia in individuals with T1D.Comment: 8 pages, 2 figures, 1 Tabl

    ?????? ?????? ??????????????? ?????? ????????????

    Get PDF
    Department of Computer Science and EngineeringRecently deep reinforcement learning (DRL) algorithms show super human performances in the simulated game domains. In practical points, the sample efficiency is also one of the most important measures to determine the performance of a model. Especially for the environment of large search spaces (e.g. continuous action space), it is very critical condition to achieve the state-of-the-art performance. In this thesis, we design a model to be applicable to multi-end games in continuous space with high sample efficiency. A multi-end game has several sub-games which are independent each other but affect the result of the game by some rules of its domain. We verify the algorithm in the environment of simulated curling.clos
    • ā€¦
    corecore