5 research outputs found

    Decoupled Multicamera Sensing for Flexible View Generation

    Get PDF
    10.1155/2016/8137859Journal of Sensors2016813785

    Weighted and filtered mutual information: A Metric for the automated creation of panoramas from views of complex scenes

    Get PDF
    To contribute a novel approach in the field of image registration and panorama creation, this algorithm foregoes any scene knowledge, requiring only modest scene overlap and an acceptable amount of entropy within each overlapping view. The weighted and filtered mutual information (WFMI) algorithm has been developed for multiple stationary, color, surveillance video camera views and relies on color gradients for feature correspondence. This is a novel extension of well-established maximization of mutual information (MMI) algorithms. Where MMI algorithms are typically applied to high altitude photography and medical imaging (scenes with relatively simple shapes and affine relationships between views), the WFMI algorithm has been designed for scenes with occluded objects and significant parallax variation between non-affine related views. Despite these typically non-affine surveillance scenarios, searching in the affine space for a homography is a practical assumption that provides computational efficiency and accurate results, even with complex scene views. The WFMI algorithm can perfectly register affine views, performs exceptionally well with near-affine related views, and in complex scene views (well beyond affine constraints) the WFMI algorithm provides an accurate estimate of the overlap regions between the views. The WFMI algorithm uses simple calculations (vector field color gradient, Laplacian filtering, and feature histograms) to generate the WFMI metric and provide the optimal affine relationship. This algorithm is unique when compared to typical MMI algorithms and modern registration algorithms because it avoids almost all a priori knowledge and calculations, while still providing an accurate or useful estimate for realistic scenes. With mutual information weighting and the Laplacian filtering operation, the WFMI algorithm overcomes the failures of typical MMI algorithms in scenes where complex or occluded shapes do not provide sufficiently large peaks in the mutual information maps to determine the overlap region. This work has currently been applied to individual video frames and it will be shown that future work could easily extend the algorithm into utilizing motion information or temporal frame registrations to enhance scenes with smaller overlap regions, lower entropy, or even more significant parallax and occlusion variations between views

    Forschungsbericht Universität Mannheim 2008 / 2009

    Full text link
    Die Universität Mannheim hat seit ihrer Entstehung ein spezifisches Forschungsprofil, welches sich in ihrer Entwicklung und derz eitigen Struktur deutlich widerspiegelt. Es ist geprägt von national und international sehr anerkannten Wirtschafts- und Sozialwissenschaften und deren Vernetzung mit leistungsstarken Geisteswissenschaften, Rechtswissenschaft sowie Mathematik und Informatik. Die Universität Mannheim wird auch in Zukunft einerseits die Forschungsschwerpunkte in den Wirtschafts- und Sozialwissenschaften fördern und andererseits eine interdisziplinäre Kultur im Zusammenspiel aller Fächer der Universität anstreben
    corecore