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Any sensing paradigm has three important components, namely, the actor, the sensor, and the environment. Traditionally, the
sensors have been attached to either the actor or the environment. This restricts the kind of sensing that can be undertaken. We
study a newer decoupled sensing paradigm,which separates the sensors fromboth the actor and the environment and tremendously
increases the flexibility with which the scenes can be viewed. For example, instead of showing just one view, “how the environment
sees the actor” or “how the actor sees the environment,” a viewer can choose to see either one or both of these views and even choose
to see the scene from any desired position in any desired direction. We describe a methodology using mobile autonomous sensors
to undertake such decoupled sensing and study the feasible number as well as the placement of such sensors. Also, we describe how
the sensors can coordinate their movements around a moving actor so as to continue capturing the required views with minimum
overall cost. The practical results obtained demonstrate the viability of the proposed approach.

1. Introduction

There are three important components of any sensing
paradigm, namely, the actor, the sensor (e.g., camera), and the
environment. In the traditional video production paradigm,
the sensors are part of the environment and the actor is
observed. In robotics, on the other hand, the sensors are
contained within the actor and the environment is observed.
However, both these paradigms limit our observation to only
one entity, either the actor or the environment. Recent trends
such as selfie sticks, drones, and autonomous robotic cameras
have paved the way for a novel sensing paradigm, which
decouples the sensors from both the environment and the
actor and allows observations of both of them.

This new paradigm of autonomous sensors capturing
both the actor and the environment tremendously increases
the flexibility with which the viewers can observe a scene.
Detaching the sensors from the environment allows the view-
ers to see the environment itself. Furthermore, decoupling of
the sensors from the actor allows the viewers to see the scene

in any direction independently of where the actor is currently
looking. Also, themobility of sensors allows the images to be
captured frommultiple perspectives and ensures that moving
actors can be handled seamlessly.

While this new paradigm can still handle the currently
popular applications like surveillance and robot-sensing, it
shall be especially useful in situations where currently preva-
lent paradigms fail. For example, interactive 3D television
(3DTV) requires very high levels of interactivity between the
viewer and the scene being observed. The users may want to
have not only the “external vision,” that is, observe how the
world sees the actor, but also the “internal vision,” that is,
how the actor sees the world. For example, while watching
the popular movie “Shrek,” some viewers may watch it in
the “default” mode of an external camera observing “Shrek.”
However, many viewers are also interested in seeing how
“Shrek” sees the world through his “Ogre-Vision.” In fact, a
very popular show atDisneyland provides viewers a chance to
experience this alternative view. However, this has been done
only for a short movie which has been rendered artificially.
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Also, the usersmaywant to change the viewing angle dynami-
cally on-the-fly and flexibly watch the show unconstrained by
the director’s preferences. Similarly, many sports enthusiasts
would like to watch “Formula-1” car races from the racing
tracks. While nowadays cameras are placed in the cars, the
viewers are still able to watch the stadium/spectators only
from one (or a few) specific angle(s) as dictated by the
car’s physical position. With our novel sensing paradigm, the
viewers can freely choose to see what one can see “if he were
at position 𝑋 looking in direction 𝑌.”

Thus we propose a novel sensing strategy to flexibly gen-
erate views consisting of both the actor and the environment.
As shown in Figure 1, we want to allow the viewer to choose
from four different types of views, namely, internal view
mosaic (i.e., “environmental panorama view as seen from
the mid actor”), external view mosaic (i.e., “an unwrapped
image of the actor itself”), a stereoscopic view from actor’s
perspective looking in any direction (independent of where
the actor is actually looking), and lastly an independent view
(i.e., looking from any position 𝑋 in direction 𝑌). However,
in order to generate these views, we need to handle two
specific challenges. Firstly, we need to find the appropriate
positions where the cameras can be placed around (static or
moving) actor such that 360∘ images of the actor and the
environment can be captured. Next, we must use methods
like view-morphing and stitching which can combine these
captured images in order to generate the required views.

In this paper, our aim is to firmly ground the decoupled
sensing paradigm and then focus on solving the first problem,
that is, finding the optimal placement and coordination
strategy for mobile cameras moving around an actor to
continuously capture 360∘ images of the actor and the
environment. The related problems of image stitching and
dynamic view generation based on user choice frommultiple
cameras have been discussed by an array of recent academic
works, for example, [1–3], and are increasingly becoming
accessible in consumer facing technology, for example, [4, 5].

While the decoupled sensing paradigm is generic and can
include both ground-based and aerial sensors, here we focus
on the grounded sensors to validate the proposed concepts.
Hence, for capturing the required images, we use a group of
custom-made autonomous cameras (as shown in Figure 2),
each of which can place itself at an appropriate position
with respect to the main actor and undertake a 360∘ (or
their maximum pan angle) rotation along their own axis
and then move around the actor in a specific pattern. This
procedure allows us to obtain a compilation of images to be
used for dynamic scene creation at a later time. Specifically,
we analyze the feasible regions, where these cameras can
position themselves, their coordination strategy for capturing
the images of a moving actor and the resulting trade-offs in
the number of cameras, the image quality, and the sensing
delay incurred.We also find theminimumnumber of sensors
required for undertaking such a sensing task.

To demonstrate the feasibility of the proposed approach,
we provide mathematical analysis, simulation results, and
practical view generation examples.

The organization of the remainder of this paper is as fol-
lows.We describe the relatedwork in Section 2.The proposed
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Figure 1: Types of flexible views available to the viewer.

method for finding camera positions and their coordination
is described in Section 3. Section 4 describes the various
evaluation results and Section 5 gives the conclusions.

2. Related Work

Kelly et al. in their multiperspective imaging work [6] have
described an interactive method for users to view a real-
world environment. The approach of letting a user choose
his own view and look in any direction is very interesting
and has been incorporated in our current work. Kanade
[7] has also described the use of multiple cameras placed
at stadium periphery to create 360∘ views with respect to
any chosen player. However, both these works focus on
creating a photorealistic 3D model of the scene and then
rendering virtual views, while we make use of mobile sensors
and decoupled sensing to capture the views from multiple
perspectives. The mobility of sensors in our approach allows
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Figure 2: One mobile sensor.

wider variety of perspective images to be captured (rather
than being rendered) and reduces the computational cost in
generating the required user views.

Borovikov et al. have described a multiperspective imag-
ing framework in [8]. They employ 64 cameras for allowing
multiple views of the presented scene. Similarly, Seitz and
Kim [9] describe stereoscopic view generation frommultiple
perspectives. However, both these works have cameras placed
at the environment periphery and do not consider the actor-
centric view of the environment which can be undertaken by
our detached sensing paradigm. Recent products like Google
Jump [4] and Facebook 360 [10] are creating consumer facing
tools to allow for viewing from different positions. However,
the considered cameras are fixed in circular and are not able
tomove around the room independently as considered in this
work.

Zhang and Chen [11] have described an “Active Rear-
ranged Capturing” approach to progressively improve the
quality of rendered views as obtainable using image based
rendering. They use a grid of 48 cameras, each of which has
(limited) capability for readjustment to improve the quality
of image capture. The ideas for image based rendering and
progressive realignment are interesting andwe have proposed
similar strategies in our work. However, we also handle
“actor-centric” views via our decoupled sensing paradigm.
Furthermore, we allow the mobile sensors to move freely in
the space and have 5 degrees of freedom (Pan, Tilt, Zoom, and
movement(s) in 𝑥-axis and 𝑦-axis) as opposed to 2 provided
(panning and side-stepping movement in 𝑥-axis) in their
system.

In multirobotic imaging, there has been some interesting
work on obtaining object-of-interest images using multiple
robots. For example, Parker [12] has studied how moving
objects can be tracked using cooperative robots. Similarly
Gerkey and Matarić [13] have studied an auction based
mechanism for coordinating robots in undertaking tracking
tasks. However, these (and similar robotics) works focus on
obtaining just one image for the object of interest from any
angle. On the other hand, our problem needs optimal image
capture from multiple perspectives which can be employed
for ex-post 2.5D image production as well as internal and
external panoramic view creation.

Yang et al. [14] describe a method for fast panoramic
face mosaicing. In particular, they describe a method of
creating face mosaics using 5 static cameras in different
angles. Their work is interesting inasmuch as it advocates
exploitation of newer techniques for panoramic facial image
creation. However, their work focuses only on (an equivalent
of) external image mosaicing and does not exploit the use of
moving cameras for better positioning across time instances.

Thus, on thewhole, while we find significant attention has
been given to multiperspective imaging by the research com-
munity, it has mostly been undertaken via (computationally
heavy) 3Dmodeling using sensors placed at the environment
periphery. We, on the other hand, propose to undertake
similar tasks using a sampling based method which uses
decoupledmobile sensors followed by comparatively cheaper
processes like stitching and morphing.

Thus, the key contribution of this paper is to intro-
duce this decoupled sensing paradigm which tremendously
increases the flexibility in view generation while still keeping
the computational costs low. We also study the optimal
placement and selection of sensors for undertaking sensing
tasks using this paradigm which are indeed being studied for
the first time due to the novel problem definition.

3. Multiperspective Imaging Using
Autonomous Mobile Cameras

The process of capturing the requisite images consists of
two separate parts. Firstly, the cameras must organize them-
selves around the actor to form a sensing structure which
appropriately capture the entire circumference of the actor
and the environment. In our approach we obtain “feasibility
regions” for each camera which ensure that the cameras,
when placed within their respective “feasibility regions,” can
indeed combine to provide the required images.

The second part considers how the cameras can reor-
ganize themselves around a moving actor such that they
continue to capture the required views. It also includes how
images can be captured from multiple perspectives to reduce
distortion in generated views while still minimizing the cam-
era movement cost. In our approach, we observe the actor’s
movement and also consider how we can reconfigure the
camera positions to improve the quality of overall generated
views. This results in new sets of feasibility regions for each
camera. Next, we calculate the costs required for each camera
tomove to any of the newly established feasibility regions.We
then try to optimally allocate the cameras to these feasibility
regions so that the overall reconfiguration cost is minimized.

For ease of understanding let us decouple the two
(sub)problems as of now, and we first focus on how cameras
can form an optimal sensing structure around a static actor
(or any other object of interest) in order to fulfill requisites
for the various required views.

3.1. Static Actor Case. Let us consider the case where we have
one actor who is surrounded by 𝑛 cameras trying to capture
the required images. As mentioned before, the basic require-
ments for all view creations are 360∘ images of the actor



4 Journal of Sensors

r

r Feasibility
region

M

O N S
𝜋/n

𝜋/n

M󳰀

𝜃in

cin
cout

Figure 3: Requirements for actor image capture.

and the environment. Besides, to support stereoscopic view of
any part of the environment, any point on the environmental
periphery must be captured by two distinct cameras. Thus,
each of these requirements poses certain restrictions on the
positioning of the cameras, thus resulting in “feasible” and
“unfeasible” regions. We proceed to find these “feasibility
regions” based on each of the individual requisites and then
later combine them to obtain overall “feasibility regions” (or
“FR”s). Please note that, for ease of formulation, we assume
the actor and the environment to be cylindrical and convex.
Furthermore, we concentrate on the single actor case and
neglect any occlusions caused by the cameras themselves onto
the other cameras.

3.1.1. Requisite 1: Capturing the Entire Actor Circumference.
This requirement enforces that each of 𝑛 cameras must cover
at least 2𝜋/𝑛 angle on the actor’s external circumference as
shown in Figure 3 so that the entire circumference is collec-
tively covered. In the figure, 𝑂 represents the center point of
a circle of radius 𝑟 which represents (or circumscribes) the
actor. If (without the loss of generality) we choose a specific
direction as the base axis, we can split the problem setup
into two symmetric halves. In each half (let us call them
“top” and “bottom”), the camera must capture images of at
least 𝜋/𝑛 angle as also shown in Figure 3. This results in a
minimum distance which must be maintained between the
camera and the actor. This limiting condition occurs where
a pair of tangents making an angle of 2𝜋/𝑛 meet. This is
because any point nearer shall form a smaller angle at the
actor circumference and thus a camera placed at that point
cannot capture the required images irrespective of the pan
angle or field of view available to it.

Thus, by considering Δ𝑀𝑁𝑂, we can find the minimum
distance to be maintained (𝑐in) as

𝑐in = 𝑟 × sec(𝜋

𝑛
) . (1)

The tangents 𝑀𝑁 and 𝑀
󸀠

𝑁 also form a restriction on the
maximum angular displacement in the camera position. In
effect,

󵄩󵄩󵄩󵄩𝜃in
󵄩󵄩󵄩󵄩 <

𝜋 − 2𝜋/𝑛

2
, (2)

where 𝜃in is the angular displacement of the physical camera
position with respect to the “ideal” position. This is due to
the fact that a camera positioned below the line 𝑀𝑁 shall
not be able to capture images of point 𝑀 which is required

for the appropriate completion of requisite 1. Similarly,
any point above 𝑀

󸀠

𝑁 shall not be able to capture point
𝑀
󸀠.
Finally, there is also a bound on the maximum distance

possible between the camera and the actor as the actor images
need to be captured at a minimum required resolution. This
distance depends on the zoom capability of the camera and
we call it 𝑐out. Thus the FR for requisite 1 shall be a sector
bounded by parameters 𝑐in, 𝜃in, and 𝑐out.

3.1.2. Requisite 2: Capturing the Entire Environmental Cir-
cumference. In order to cover the entire outer circumference,
each camera must cover at least one 2𝜋/𝑛 angular arc (or
two 𝜋/𝑛 angular arcs) on it. In our proposed approach,
the cameras must capture the images of the actor and the
environment in the same sensing cycle; hence, it makes sense
for cameras to capture both in one panning action as shown
in Figure 4(a).This results in two symmetric halves where the
camera captures the environmental images. Further details
for the “top” half have been shown in Figure 4(b), where
a camera placed at point 𝑃 captures images of the actor
centered at 𝑂 and then continues its pan motion in order
to obtain images for the arc 𝐿𝑄 on the environmental
periphery which forms an angle 𝜋/𝑛 on 𝑂. We assume
actor radius (𝑟), distance between actor and the environment
(𝐸), and the (symmetric half of) camera “net pan angle”
(𝜙) to be known. Also, 𝜙 is taken to be the combination
of the camera pan angle (𝜙pan) and camera field of view
(𝜙fov).

Clearly, the further the camera goes from the center of the
actor the more angle it can capture. But there exists a limit to
how near it can come to the actor. Coming nearer to the actor
might be useful for reducing the movement cost for rotation
vector between capture cycles (as further discussed in next
section) and increasing the resolution of the actor images
being captured.

Please note that as the camera moves further away from
the actor the occluded angle (i.e., 𝛼 as shown in Figure 4)
keeps decreasing and the angle for which the environment
is captured (i.e., 𝛽) keeps increasing. There is a point 𝑃

beyond which 𝛽 can capture larger than the required angle
(𝜋/𝑛) at 𝑂. We can find the distance 𝑥 for this point 𝑃 by
first formulating the values of 𝛼 and 𝛽 in terms of 𝑥 and
other known environmental variables and then solving the
converse problem.

By considering Δ𝑀𝑃𝑂, we can find the value of 𝛼 as

𝛼 = cos−1 𝑟
𝑥
. (3)

By solvingΔ𝑀𝑁𝑂 and then formulating equations inΔ𝑁𝑄𝑃,
we find the value of 𝛽 as

𝛽

= tan−1 { (𝐸 − 𝑟 ⋅ sec (𝑏)) ⋅ cos (𝑏)
√𝑥2 − 𝑟2 − 𝑟 ⋅ tan (𝑏) − (𝐸 − 𝑟 ⋅ sec (𝑏)) ⋅ sin (𝑏)

} .

(4)
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Figure 4: Environmental image capture.

We know that 𝜙 is the sum of the occluded (𝛼) and the
unoccluded (𝛽) angles. Thus, to solve the converse problem,
that is, distance 𝑥 in terms of 𝛼 and 𝛽, we formulate

𝜙 = cos−1 𝑟
𝑥

+ tan−1 𝑘
1

√𝑥2 − 𝑟2 − 𝑘
2

, (5)

where 𝑘
1
= (𝐸 − 𝑟 ⋅ sec(𝑏)) ⋅ cos(𝑏) and 𝑘

2
= −𝑟 ⋅ tan(𝑏) − (𝐸 −

𝑟 ⋅ sec(𝑏)) ⋅ sin(𝑏).
Note that 𝑘

1
and 𝑘

2
are known values independent of 𝑥

and thus the only unknown in (5) is 𝑥.
This equation can be converted into the standard

quadratic form if we use tan(⋅) operator on both sides and
define a new unknown variable 𝑢 as 𝑢 = √𝑥2 − 𝑟2. Thus,

𝑢 =
− cos𝜙

2 ⋅ (𝑟 ⋅ sin𝜙 − 𝑘
2
⋅ cos𝜙 + 𝑘

1
⋅ sin𝜙)

+

√cos2𝜙 − 4 ⋅ (𝑟 ⋅ sin𝜙 − 𝑘
2
⋅ cos𝜙 + 𝑘

1
⋅ sin𝜙) ⋅ (𝑘

2
⋅ 𝑟 ⋅ sin𝜙 − 𝑘

1
⋅ 𝑟 ⋅ cos𝜙)

2 ⋅ (𝑟 ⋅ sin𝜙 − 𝑘
2
⋅ cos𝜙 + 𝑘

1
⋅ sin𝜙)

(6)

and finally 𝑥 can be found as

𝑥 = √𝑢2 + 𝑟2. (7)

We can cover the required angle at the outer circumfer-
ence if we place the camera at any point on the base axis at a
distance greater than 𝑥. The amount of lateral movement the
camera is allowed is dictated by the angle formed between
the base axis and the last point on the outer circumference
that needs to be covered, that is, point 𝑄. Thus, in effect, this

value depends on the symmetric half of camera net pan angle
(𝜙). As shown in Figure 4(c), if the camera moves in front of
line 𝑄𝑅

󸀠, it cannot capture the environmental circumference
in the top half till the required angle. Similarly, if it moves in
front of line 𝑄

󸀠

𝑅, it cannot capture the lower circumference
till the required angle.

This results in sector-shaped feasibility region 𝑃𝑅𝑆𝑅
󸀠

formed at angles ±𝜃
𝑥
starting from point 𝑃 at distance 𝑥 on

the base axis and ending at a point on the outer circumference
𝑆. An interesting point to note is that the angle 𝜃

𝑥
for this
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sectoral shape shall always be acute irrespective of whether
𝜙 is acute or obtuse. This is so because acute 𝜙 will cause
acute 𝜃

𝑥
limit in opposite half (e.g., ∠𝑄𝑃𝑂 will cause a

corresponding constraint on ∠𝑆𝑃𝑅
󸀠), while obtuse 𝜙 will

cause acute 𝜃
𝑥
restriction in its own half.

Thus, the limits on the value of 𝜃
𝑥
can be defined as

󵄩󵄩󵄩󵄩𝜃𝑥
󵄩󵄩󵄩󵄩 < min {𝜙, 𝜋 − 𝜙} , (8)

where 𝜋 is indeed the theoretical limit of 𝜙 as we are only
considering one half of the symmetric setup.

3.1.3. Requisite 3: Stereoscopic Imagery. For obtaining stereo-
scopic images of the outer circumference, each point on it
must be covered by two cameras and hence each cameramust
cover twice the angles as compared to simple monoperspec-
tive imaging. The way we have formulated the problem in
previous requisite is generic and if we just replace the angle
to be covered at the center to be 4𝜋/𝑛, that is, 2𝜋/𝑛 in both up
and down directions, we can use the same set of derivations
as above to obtain the FR. Hence, the only parameter that
changes in Figure 4(b) is angle 𝑏 whose value now shall be
(2𝜋/𝑛) − 𝑎.

The restrictions on feasible region posed by each of these
requirements can also be combined to obtain an overall FR.
An illustration of such combination is shown in Figure 5.
Please note that since stereoscopic imagery requirement “sub-
sumes” the environmental capture requirement, we consider
only the more restrictive requisite to calculate the overall FR.
The overall FR shall be at the intersection of the two sector-
shaped feasibility regions and is parameterized by 𝑐in, 𝑐out, 𝜃in,
𝑥, and 𝜃

𝑥
. The angular position of this FR shall indeed be

different for each camera, as each of these cameras needs to be
placed at equal angular distances around the actor in order to
achieve the overall task(s). Also, without the loss of generality,
if we fix one camera of the cameras as the “base” camera,
we can assign its angular direction as zero. The remaining
camera’s direction can be calculated with respect to this base
camera.

3.1.4. Minimum Requirements Analysis. Based on the various
requirements discussed in this section, we can find the
minimum number of cameras and their required net pan

angle for successful capture of required images. Let us first
try to find the minimum number of cameras based on 𝜃in
requirement. As mentioned in (2), 𝜃in should be less than
(𝜋 − 2𝜋/𝑛)/2 and it must have a positive value. This equation
translates to

𝑛 > 2 (9)

which means the minimum number of cameras required is 3.
This number, 3, also is able to meet the constraints of 𝑐in and
so forth and thus qualifies as the minimum number for the
tasks being considered.Theminimumnet pan angle required
for the cameras is dictated by the environmental capture
requisite. The bounding condition happens when 𝐸 ≫ 𝑟

and 𝛼 can be neglected. In such a case, for monoperspective
viewing, the minimum (symmetric half of) net pan angle
required is

𝜙 >
𝜋

𝑛
(10)

and for stereoscopic viewing it is

𝜙 >
2𝜋

𝑛
. (11)

Thus, for 3 cameras, the minimum net pan angle required for
stereoscopic viewing is 240∘.

3.2. Dynamic Camera Reconfiguration for Moving Actor.
As the actor moves, the cameras must also dynamically
reorganize themselves such that they continue to capture the
actor images at same (or better) quality to support various
view generation. An overview of our proposed approach to
undertake this reorganization from sensing cycle 𝑘 to 𝑘 + 1

is as follows. We first translate the FRs found in cycle 𝑘 based
on actor’s displacement to find potential FRs in cycle 𝑘 + 1.
Next we rotate these newly found FRs based on a “progressive
realignment” strategy to (potentially) improve view quality.
This process of feasibility region translation and realignment
has been shown in Figure 6. Lastly, we assign these computed
FRs to the individual sensors in an optimal manner. Such a
process is repeated for each sensing cycle. Please note that we
assume that actor and camera positions are known or easily
obtainable in each cycle. Now, let us look at each of these steps
in more detail.

3.2.1. Step 1: Simple Displacement Based on Actor Movement.
Thefirst step is the simple translation of FRs to follow an actor
who is moving across the “stage.” The translation vector can
simply be defined as

𝐷tr = [𝑥
𝑘+1

− 𝑥
𝑘
, 𝑦
𝑘+1

− 𝑦
𝑘
]
𝑇

, (12)

where [𝑥
𝑘+1

, 𝑦
𝑘+1

] and [𝑥
𝑘
, 𝑦
𝑘
] are the actor positions in

cycles 𝑘 + 1 and 𝑘, respectively.

3.2.2. Step 2: Progressive Realignment for Reducing Image
Distortion. The simple displacement described in step 1 shall
result in zero (or almost zero) relative movement between
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the camera structure and the actor.This means that there will
also be zero improvement in the overall quality of the gen-
erated views. Thus, we employ a “progressive realignment”
strategy to improve the view quality by increasing the number
of perspectives from which the image(s) are being captured.
The basic idea is as follows. If 4 cameras were obtaining actor
images with an angular distance of 90∘ between them, we
could move the cameras by 45∘ each so that they can create
newer perspectives for image capturing. Thus, if the images
from these two capture cycles were combined, we could use
images from8different perspectives differing fromeach other
by 45∘, which shall reduce the distortion in the final views
generated.

To quantify this notion of distortion, let us consider (top
view) Figure 7where the actorwith center𝑂 is being captured
by a camera with image plane 𝐴𝐴

󸀠 and focal point 𝐹. Let
the camera’s horizontal resolution be 2𝑑 pixels. Each part
of the arc BCE is captured by some pixels on the camera
plane 𝐴𝐴

󸀠. However, the relative lengths of the arcs being
captured vary depending on the angular position of the arc.
While a relatively small distance of arc is covered by one pixel
near the axis, a much larger distance is covered further away.
For the purpose of our analysis we define distortion as the
ratio of the arc lengths captured by one pixel near the axis to
that at a disparate angular position. In Figure 7, using similar
triangles, we can formulate the following equation:

𝑟 sin 𝛿
1

𝑟 sin 𝜃
=

1

𝑑
. (13)
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We can obtain similar equations for any chosen pixel, say 𝑛:

𝑟 sin 𝛿
𝑛

𝑟 sin 𝜃
=

𝑛

𝑑
. (14)

To calculate the distortion at any particular angular position,
we compare the arc length captured by the first pixel with
that captured by the 𝑛th pixel and quantify the difference as
distortion. As the arc lengths created are directly proportional
to the angle they subtend at the center 𝑂, we in effect need
to calculate the ratio between the angles which correspond
to the 1st pixel and the 𝑛th pixel. Note that, in the above
formulation, the incremental angle corresponding to 𝑛th
pixel is represented by 𝛿

𝑛
− 𝛿
𝑛−1

.
Thus, the distortion at any point is

dist
𝑛

=
sin−1 (((𝑛 + 1) /𝑑) × sin 𝜃) − sin−1 ((𝑛/𝑑) × sin 𝜃)

sin−1 ((1/𝑑) × sin 𝜃)

− 1

(15)

and the maximum distortion is

distmax =
𝜃 − sin−1 (((𝑑 − 1) /𝑑) × sin 𝜃)

sin−1 ((1/𝑑) × sin 𝜃)
− 1. (16)

Using this function we plotted the value of maximum
distortion (as shown in Figure 8) for different number of
cameras. We found that distmax is 99% for 𝑛 = 3 and comes
down exponentially to approximately 15% and 5%with 𝑛 = 6

and 𝑛 = 9, respectively.Thus, if we can employ just two (resp.,
3) rounds of realignment for one image combination phase,
the distortion ratio can be brought down drastically.

The precise value for realignment of FRs during such
combination phases is based on a method inspired by
incremental JPEGs.We capture the images from 𝑛perspective
positions in the first cycle. This provides a base case quality
for creating the required views. We then rotate the cameras
such that they maximally try to increase the number of
perspectives in a binary sort equivalent manner (e.g., 0.5 ×

2𝜋/𝑛 for round 2 and so on). Thus we can get “rough”
equivalents of 𝑛 × 𝑘 cameras after 𝑘 rounds. The initial
few rounds carry more coarse level information and each
iterated level can be used to fine-tune it. This coarse-fine
approach assumes that the distance traveled by actor between
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Figure 9: Kuhn’s Hungarian method for OAP.

cycles is very small as compared to the overall area. It also
assumes that the environment periphery does not change
significantly between sensing cycles and the actor undergoes
only translation motion and that shape deformation and so
forth can be neglected. We use this incremental coarse-fine
approach for one combination phase during the period for
which each of these conditions can be satisfactorily met. If
any of changes exceed a threshold value, we start a new
combination phase.

Note that this analysis is also useful for system designers
to make informed decisions about trade-offs between adding
more cameras to reduce capturing time and allowing more
delay (i.e., more realignment steps) to maintain low cost for
any acceptable level of distortion.

3.2.3. Step 3: Optimal Assignment of Cameras to FRs. The
final step is to optimally assign the cameras to these newly
found FRs such that the overall movement cost is minimized
where the cost refers to the sum of Euclidean distances that
need to be traveled by the cameras and the inertial cost (cost
of starting movement as opposed to remaining stationary)
where applicable. To undertake such an assignment, we first
need to calculate the costs for each camera to move from its
current position (say in iteration 𝑘) to any of the 𝑛 feasible
regions in iteration 𝑘 + 1. We do not enforce that camera
𝑖 should only move to feasible region 𝑖 in cycle 𝑘 + 1, as
“dynamic role swapping” could be useful to reduce the overall
cost. For example, consider a two-camera case where each
camera incurs some inertial cost (the fact that it must move)
followed by some movement cost in this reconfiguration. It
may so happen that camera 1 falls into FR2 as computed in
iteration 𝑘 + 1 (i.e., FR𝑘+1

2

). Hence, it would make sense for
camera 1 to handle FR𝑘+1

2

and save the inertial cost, even
though camera 2 needs to travel a bit more.

To formulate this problem generically, we have 𝑛 cameras,
each of which needs to move to one of the 𝑛 FRs and there is
a cost involved for any camera (say 𝑖) to move to any of the
the FRs (say 𝑗) which can be represented as 𝑐

𝑖,𝑗
. Thus, if we

represent the set of all cameras as 𝐶 and that of all feasibility
regions as 𝐹, our aim is to find the allocation set 𝑎∗ out of all
allocation sets 𝐶 × 𝐹 → 𝐴 which minimizes the overall cost
to be incurred. Thus, we need to find

min ∑

𝑎∈𝐴

𝑐 {𝑓 (𝑎)} , (17)

where 𝑐{𝑓(𝑎)} is the sum of costs for various individual
camera-task assignments for allocation 𝑎.

This problem can be translated to the “Optimal Assign-
ment Problem” (OAP), wherein 𝑛 agents need to be assigned
𝑛 tasks in an optimal manner. If we represent each camera’s
costs for moving to each of the FRs as

𝐶
𝑖,𝑗

=

[
[
[
[
[

[

𝑐
1,1

𝑐
1,2

⋅ ⋅ ⋅ 𝑐
1,𝑛

𝑐
2,1

𝑐
2,2

⋅ ⋅ ⋅ 𝑐
2,𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑐
𝑛,1

𝑐
𝑛,2

⋅ ⋅ ⋅ 𝑐
𝑛,𝑛

]
]
]
]
]

]

, (18)

we can find the optimal assignment solution using Kuhn’s
Hungarian method [15].

The key idea of Kuhn’s method is as follows.We represent
the costs as shown in Figure 9(a). Next, we find the least
cost for each task (i.e., minimum value in each row) and
subtract the entire row by it. This results in at least one
nonzero element per row as (partially) shown in Figure 9(b).
If multiple zeroes exist, the allocation must try to find a
combination which results in no conflicts between rows
as each agent can be assigned only one task. If no such
combination is possible (as in Figure 9(c) where rows 1 and
2 are conflicting in column 2), the idea is to iteratively mark
out all the rows and columns involved (as in Figure 9(d))
and then find the 2nd least-costing alternative for one of
the conflicting rows as this shall provide the best overall
feasible result. In fact, themethod is proven to give guaranteed
optimal solutions in (𝑂(𝑛

3

)) polynomial time [15], and hence
we employ it to find the optimal camera allocation for
dynamic reconfiguration at each step.
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Figure 10: Feasibility region analysis.

4. Evaluation

4.1. Creation of Actor and Environment Panorama. Our first
experiment aims to verify the premise that there exist specific
feasibility regions images captured from which satisfy the
necessary conditions for view generation (and conversely
those from outside these FRs do not). To authenticate this
hypothesis we chose a cylindrical pillar as an “actor” or the
“object of interest” and studied the effect of capturing images
from various points around it, given that our aim is to capture
the entire circumference of the pillar. As discussed earlier,
capturing the entire circumference is a basic requirement to
facilitate the views of any point of the “actor” as may be
desired by the viewer ex-post.

To make the results clearer we pasted an adhesive tape
marked with numbers 1 through 17 at 15 cm distance each
as shown in Figure 10(a) on the pillar and then took the
images from various points around it as shown in a (top
view) representation in Figure 10(b). Each of the alphabets
A through G represents an image capture position and it
is clear that some of the capturing points fall into the 3
feasibility regions (namely, A, D, and F) while others do
not. To compare the results, we chose points D and F as
reference points and permuted the third point from amongst
the remaining points. The images from the chosen points
were simply padded as shown in Figures 10(d), 10(e), and
10(f). We can clearly see that while Figure 10(d) shows the
entire circumferencewith all numbers 1 to 17 visible, any other
combination fails to do so. For example, Figure 10(e) shows
the combination of images captured from points B, D, and F.
As B is too close to the pillar (and hence outside the FR), it
cannot capture the required part of circumference. Similarly,
image captured from point C in Figure 10(f) is outside the
FR and cannot capture the required view, thus resulting in
incomplete panorama.

The subjective evaluation results by 5 viewers from our
lab regarding the reconstruction completeness (neglecting

distortion) also corroborated the obtained results. As shown
in Figure 10(c), the images obtained from the only combina-
tion which covered the required feasibility regions (i.e., A, D,
and F) obtained the highest average points (i.e., 8.8/10). The
others which did not cover the feasibility regions obtained
significantly lesser results. These results helped us verify that
feasibility regions do exist and the images captured from them
can provide a much better 360∘ reconstruction than those
from outside them.

After conceptually verifying the notion of FRs, we next
proceeded to capture images using three mobile sensors
around an actor. Our aim was to capture images to facilitate
both internal and external panorama of the scene. The
panoramas can be used as an evidence that the entire
circumference has been captured and that if need be the
viewer can be presented with parts of the panorama with
view-morphing so as to simulate him looking from any
particular direction onto any particular angle.

One sample setup in our lab with three mobile sensors
has been shown in Figure 11. The mobile sensors are actually
Canon VC-C4 cameras placed on custom-built mobile vehi-
cles which are controlled by a PC using bluetooth connection.
We used the cameras to capture the images of a “pokemon”
actor and the lab environment. The images were captured
using the concept of feasibility regions and the obtained
results for actor as well as the environment panorama have
been shown in Figures 12 and 13, respectively.

While the details for the fourth view generation (i.e.,
independent view from an arbitrary position and angle) are
left outside the scope of this paper, we present its preview at
a supporting website [16], a snapshot of which is shown in
Figure 14.

4.2. Comparison between Optimal Assignment and Baseline
Method. To study the effects of FR and optimal assignment
on the sensor movement cost we calculated the trajectories
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Figure 11: One sample setup.

Figure 12: Actor mosaic.

and costs for a coordinated sensing scenario usingMatlab.We
computed the trajectories (and costs) firstly for the baseline
approach and then compared it with a feasibility region (FR)
based approach and finally with the optimal assignment cum
feasibility region (OAP-FR) based approach. The cost in our
study refers to the sum of Euclidean distances traveled by
individual cameras and the inertial cost, that is, the transition
cost for cameras to start moving. This transition cost was set
as equal to 2 units of distance in our study.

To be fair to the baseline approach, we assumed that
the cameras are continuously placed at 𝑐in (as described in
Section 3.1) position which incurs least translation cost while
still being feasible. However, they moved only from one such
calculated point at time 𝑘 (𝑐𝑘in) to the next calculated single
feasible point 𝑐

𝑘+1

in . FR based approach on the other hand
allowed the camera (say 𝑖) to move to any position in the
calculated FR for time 𝑘 + 1 (FR𝑘+1

𝑖

). This meant that it could
choose to move to the nearest point of the FR and does
not need to travel to the specific point 𝑐𝑘+1in . Furthermore, in
certain situations, it may not need to move at all, as it could
automatically fall into its FR for the next cycle. Lastly, in the
OAP-FR approach, we allowed the cameras to calculate the
costs to move to any of the FRs and an optimal assignment of
cameras to FRs was chosen which minimizes the overall cost.
Thus, camera 𝑖 could fall into 𝑖 + 1th FR (or any other FR for
that matter) and not move at all if doing so minimized the
overall cost.

The calculated trajectories (only the first 4 cycles have
been shown for clarity) for the different approaches have
been shown in Figure 15. Figure 15(a) shows the movement
of the actor (with actor center marked as ⃝), starting at
[0, 0] and moving [2, 2] in each cycle. Figure 15(b) shows

the trajectories taken by the baseline method wherein the
minimum distance 𝑐in is 10. The cameras follow the transla-
tion as dictated by the actor movement and then undertake a
60∘ rotation to increase the number of sensing perspectives.
We fix the maximum allowed sensing delay to be 2 cycles.
The starting position of each camera has been marked with
its respective number and its movement has been shown in
the figure. Similarly, Figures 15(c) and 15(d) show the camera
movement based on FR and OAP-FR based approaches.

The costs for the three approaches over a period of 100
sensing cycles have been shown in Figure 16. As can be seen,
the cost for the FR basedmethod is lesser (3369 units after 100
cycles) than the baselinemethod (3624 units after 100 cycles).
This is due to the fact that the FRs allow a larger flexibility for
the camera to move and it is not constrained to move to a
specific point. Similarly, the cost for OAP-FR based approach
is significantly lesser (1807 units after the 100 cycles) than the
baseline approach as it allows the cameras to move to any
specific FR. This “dynamic role swapping” between cameras
also increases the probability of cameras falling into some FR
and saving the inertialmovement cost. For example, as shown
in Figure 15(d), camera 3 needs to actually move only once in
4 cycles as it can take over the FRs for camera 2 and camera 1
for one cycle each and thus reduce the overall cost.

4.3. Effect of Multiple Perspectives on Quality of Images. Our
next aim was to study the effect of multiple perspectives on
the quality (or conversely distortion) of the images captured.
We compared the distortion in the 360∘ image of the “actor”
discussed in Section 4.1 for images reconstructed using 3,
6, and 12 with a ground truth “flat” image. Figures 17(a),
17(b), and 17(c), respectively, display samples of the image as
reconstructed using 3, 6, and 12 numbers of perspectives and
the ground truth image as captured by laying out the adhesive
tape on a flat wall as shown in Figure 17(d).

To obtain a human-perspective evaluation of the quality
of reconstruction, we asked 5 members of our lab to rate the
distortion quality of the reconstructed images as compared to
the ground truth image which wasmarked as 10/10. As can be
noticed from the figures, the results show a clear increasing
trend with higher number of perspectives available. This
convinced us of our distortion analysis results and also
convinced us that increasing number of perspectives via
more cameras or more sensing cycles does reduce the image
distortion experienced.

4.4. Optimal Sensor Selection. One interesting deliverable of
our view based requirements analysis is the optimal number
of sensors required for undertaking such a sensing task.
Given themaximum acceptable distortion and themaximum
sensing delay (i.e., number of sensing cycles allowed per
combination), we can compute the minimum number of
sensors which can fulfill the requirements for various views.
Such an analysis is possible as there exist trade-offs between
the image distortion and the number of perspectives from
which the image is captured (as discussed in Section 3.2.2
and verified in previous experiment). These numbers of
perspectives are in turn based on number of cameras being
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Figure 13: Environment mosaic.
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Figure 14: Snapshot of independent view preview.

employed and the number of sensing cycles allowed for one
reconstruction. Thus, these three factors can be traded off as
shown in Figure 18.

For example, if we are allowed a maximum distortion of
0.2 and a maximum delay of 2 sensing cycles, we can use
Figure 18 to find the minimum number of cameras required
as 4. Please note that this analysis can be used to find the least-
costing combination before buying the physical equipment
and thus helps in cutting down the project equipment cost.

4.5. Discussion. Based on our analysis and the described
experimental results, we conclude the following:

(1) Decoupled sensing can actually capture 360∘ images
of the actor and the environment.

(2) There exist feasibility regions (“FR”s) around the
actor, where the cameras placed are significantly
better suited for 360∘ image capture as opposed to
other positions.

(3) These FRs also help in reducing the dynamic recon-
figuration costs around a moving actor.

(4) An OAP-FR approach helps in further reducing this
dynamic camera reconfiguration cost.

(5) Progressive realignment approach and delay allow-
ance can help in increasing captured image quality
by increasing the number of perspectives of image
capture.

(6) There exist trade-offs between number of cameras,
delay-allowance, andmaximum acceptable distortion
and this relationship can be used to find optimal
sensor number.

While the proposed decoupled sensing paradigm is
generic, we do realize that our above-mentioned experimen-
tal results were obtained under the assumptions like actor and
environment convexity, single actor, no occlusions, limited
depth, and nonlive data. Furthermore, our current experi-
mental validation has focused on indoor small to medium
scale environments. We acknowledge the complexities asso-
ciated with large-scale scene capture and sensormovement in
irregular environments (e.g., inaccurate movement of mobile
camera sensors, avoiding obstacles, and lighting variation)
but leave them outside the scope of the current work. How-
ever, in future work, we intend to progressively relax these
assumptions for a more generic sensing application. Also,
while we currently focused only on visual cameras, in the
future we may employ IR cameras or other ranging sensors
(for say a reconnaissance mission) to build an environment
model and still find out what the actor shall observe if placed
in such an environment.

We believe that this decoupled sensing approach (in its
current or enhanced form) shall be very useful in many areas
like reconnaissance and surveillance, telepresence, interac-
tive television, military tasks, and analysis of sports and
dance/performance videos. It can also be applied in pedagogy
for placing students in the trainer’s shoes and letting them
experience the scene around them.

5. Conclusions

In this paper, we have analyzed a novel decoupled sensing
paradigmwhich allows flexible sensing and reconstruction of
any scene.This decoupled sensing allows viewers to choose to
see the actor and the environment from any position and any
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direction. In order to undertake such sensing, the cameras
need to be placed in certain positions (feasibility regions)
around the actor whichmust change dynamically as the actor
moves. We have provided mathematical analyses as well as
practical results for the calculation of such feasibility regions
and their benefits on sensing quality as well as on sensing
cost. Lastly, we have also described a method for obtaining
the minimum number of sensors required for undertaking
such sensing tasks.

In our future work, we plan to handle “live” view
generation for multiple, nonconvex actors in occluded envi-
ronments.We also intend to study the use of multiple sensing
modalities to increase the quality of the generated viewswhile
trying to decrease the costs incurred.
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