137,248 research outputs found

    Tracking human movement in office environment using video processing

    Get PDF
    In this paper, we proposed an approach of multi-person movement tracking in office environment without any identity conflicts. Simple image processing with frame differentiation method is applied to identify multiple human motion. An Expert System is applied to predict next camera occurrence of the tracking human. The main objective of this work is to detect and track multi-human motion using single camera in more than a room in an office

    A sparsity-driven approach to multi-camera tracking in visual sensor networks

    Get PDF
    In this paper, a sparsity-driven approach is presented for multi-camera tracking in visual sensor networks (VSNs). VSNs consist of image sensors, embedded processors and wireless transceivers which are powered by batteries. Since the energy and bandwidth resources are limited, setting up a tracking system in VSNs is a challenging problem. Motivated by the goal of tracking in a bandwidth-constrained environment, we present a sparsity-driven method to compress the features extracted by the camera nodes, which are then transmitted across the network for distributed inference. We have designed special overcomplete dictionaries that match the structure of the features, leading to very parsimonious yet accurate representations. We have tested our method in indoor and outdoor people tracking scenarios. Our experimental results demonstrate how our approach leads to communication savings without significant loss in tracking performance

    Tracking Moving Objects by a Mobile Camera

    Get PDF
    A system for video tracking of a moving object by the robot-held camera is presented, and efficient tracking methods are proposed. We describe our initial implementation of a system which is capable of tracking a single moving object against highly textured background. A pyramid-based image processor, PVM-1 is employed to support some fast algorithms in locating the moving object from the difference image. Object tracking is accomplished in the static look-and-move mode by the translational motion of a CCD camera mounted on the robot arm. Discussion is given on the implementation of tracking filters and on the effective utilization of multi-resolution processing for the object searching. Finally a method for dynamic look-and-move tracking is proposed for the future improvement of tracking performance

    A multi-object spectral imaging instrument

    Get PDF
    We have developed a snapshot spectral imaging system which fits onto the side camera port of a commercial inverted microscope. The system provides spectra, in real time, from multiple points randomly selected on the microscope image. Light from the selected points in the sample is directed from the side port imaging arm using a digital micromirror device to a spectrometer arm based on a dispersing prism and CCD camera. A multi-line laser source is used to calibrate the pixel positions on the CCD for wavelength. A CMOS camera on the front port of the microscope allows the full image of the sample to be displayed and can also be used for particle tracking, providing spectra of multiple particles moving in the sample. We demonstrate the system by recording the spectra of multiple fluorescent beads in aqueous solution and from multiple points along a microscope sample channel containing a mixture of red and blue dye

    Downstream Task Self-Supervised Learning for Object Recognition and Tracking

    Get PDF
    This dissertation addresses three limitations of deep learning methods in image and video understanding-based machine vision applications. Firstly, although deep convolutional neural networks (CNNs) are efficient for image recognition applications such as object detection and segmentation, they perform poorly under perspective distortions. In real-world applications, the camera perspective is a common problem that we can address by annotating large amounts of data, thus limiting the applicability of the deep learning models. Secondly, the typical approach for single-camera tracking problems is to use separate motion and appearance models, which are expensive in terms of computations and training data requirements. Finally, conventional multi-camera video understanding techniques use supervised learning algorithms to determine temporal relationships among objects. In large-scale applications, these methods are also limited by the requirement of extensive manually annotated data and computational resources.To address these limitations, we develop an uncertainty-aware self-supervised learning (SSL) technique that captures a model\u27s instance or semantic segmentation uncertainty from overhead images and guides the model to learn the impact of the new perspective on object appearance. The test-time data augmentation-based pseudo-label refinement technique continuously trains a model until convergence on new perspective images. The proposed method can be applied for both self-supervision and semi-supervision, thus increasing the effectiveness of a deep pre-trained model in new domains. Extensive experiments demonstrate the effectiveness of the SSL technique in both object detection and semantic segmentation problems. In video understanding applications, we introduce simultaneous segmentation and tracking as an unsupervised spatio-temporal latent feature clustering problem. The jointly learned multi-task features leverage the task-dependent uncertainty to generate discriminative features in multi-object videos. Experiments have shown that the proposed tracker outperforms several state-of-the-art supervised methods. Finally, we proposed an unsupervised multi-camera tracklet association (MCTA) algorithm to track multiple objects in real-time. MCTA leverages the self-supervised detector model for single-camera tracking and solves the multi-camera tracking problem using multiple pair-wise camera associations modeled as a connected graph. The graph optimization method generates a global solution for partially or fully overlapping camera networks

    Using Panoramic Videos for Multi-person Localization and Tracking in a 3D Panoramic Coordinate

    Full text link
    3D panoramic multi-person localization and tracking are prominent in many applications, however, conventional methods using LiDAR equipment could be economically expensive and also computationally inefficient due to the processing of point cloud data. In this work, we propose an effective and efficient approach at a low cost. First, we obtain panoramic videos with four normal cameras. Then, we transform human locations from a 2D panoramic image coordinate to a 3D panoramic camera coordinate using camera geometry and human bio-metric property (i.e., height). Finally, we generate 3D tracklets by associating human appearance and 3D trajectory. We verify the effectiveness of our method on three datasets including a new one built by us, in terms of 3D single-view multi-person localization, 3D single-view multi-person tracking, and 3D panoramic multi-person localization and tracking. Our code and dataset are available at \url{https://github.com/fandulu/MPLT}.Comment: 5 page
    corecore