212,300 research outputs found

    Distributed control of multi-robot systems using bifurcating potential fields

    Get PDF
    The distributed control of multi-robot systems has been shown to have advantages over conventional single robot systems. These include scalability, flexibility and robustness to failures. This paper considers pattern formation and reconfigurability in a multi-robot system using bifurcating potential fields. It is shown how various patterns can be achieved through a simple free parameter change. In addition the stability of the system of robots is proven to ensure that desired behaviours always occur

    Scalable Asymptotically-Optimal Multi-Robot Motion Planning

    Full text link
    Finding asymptotically-optimal paths in multi-robot motion planning problems could be achieved, in principle, using sampling-based planners in the composite configuration space of all of the robots in the space. The dimensionality of this space increases with the number of robots, rendering this approach impractical. This work focuses on a scalable sampling-based planner for coupled multi-robot problems that provides asymptotic optimality. It extends the dRRT approach, which proposed building roadmaps for each robot and searching an implicit roadmap in the composite configuration space. This work presents a new method, dRRT* , and develops theory for scalable convergence to optimal paths in multi-robot problems. Simulated experiments indicate dRRT* converges to high-quality paths while scaling to higher numbers of robots where the naive approach fails. Furthermore, dRRT* is applicable to high-dimensional problems, such as planning for robot manipulatorsComment: 8 pages, 12 figures, submitted to the first International Symposium on Multi-Robot and Multi-Agent Systems (MRS

    Collision-aware Task Assignment for Multi-Robot Systems

    Full text link
    We propose a novel formulation of the collision-aware task assignment (CATA) problem and a decentralized auction-based algorithm to solve the problem with optimality bound. Using a collision cone, we predict potential collisions and introduce a binary decision variable into the local reward function for task bidding. We further improve CATA by implementing a receding collision horizon to address the stopping robot scenario, i.e. when robots are confined to their task location and become static obstacles to other moving robots. The auction-based algorithm encourages the robots to bid for tasks with collision mitigation considerations. We validate the improved task assignment solution with both simulation and experimental results, which show significant reduction of overlapping paths as well as deadlocks
    corecore