2 research outputs found

    ๋ถ„์‚ฐ๋œ ๋กœํ„ฐ๋กœ ๊ตฌ๋™๋˜๋Š” ๋น„ํ–‰ ์Šค์ผˆ๋ ˆํ†ค ์‹œ์Šคํ…œ์˜ ๋””์ž์ธ ์ƒํƒœ์ถ”์ • ๋ฐ ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2020. 2. ์ด๋™์ค€.In this thesis, we present key theoretical components for realizing flying aerial skeleton system called LASDRA (large-size aerial skeleton with distributed rotor actuation). Aerial skeletons are articulated aerial robots actuated by distributed rotors including both ground connected type and flying type. These systems have recently attracted interest and are being actively researched in several research groups, with the expectation of applying those for aerial manipulation in distant/narrow places, or for the performance with entertaining purpose such as drone shows. Among the aerial skeleton systems, LASDRA system, proposed by our group has some significant advantages over the other skeleton systems that it is capable of free SE(3) motion by omni-directional wrench generation of each link, and also the system can be operated with wide range of configuration because of the 3DOF (degrees of freedom) inter-link rotation enabled by cable connection among the link modules. To realize this LASDRA system, following three components are crucial: 1) a link module that can produce omni-directional force and torque and enough feasible wrench space; 2) pose and posture estimation algorithm for an articulated system with high degrees of freedom; and 3) a motion generation framework that can provide seemingly natural motion while being able to generate desired motion (e.g., linear and angular velocity) for the entire body. The main contributions of this thesis is theoretically developing these three components, and verifying these through outdoor flight experiment with a real LASDRA system. First of all, a link module for the LASDRA system is designed with proposed constrained optimization problem, maximizing the guaranteed feasible force and torque for any direction while also incorporating some constraints (e.g., avoiding inter-rotor air-flow interference) to directly obtain feasible solution. Also, an issue of ESC-induced (electronic speed control) singularity is first introduced in the literature which is inevitably caused by bi-directional thrust generation with sensorless actuators, and handled with a novel control allocation called selective mapping. Then for the state estimation of the entire LASDRA system, constrained Kalman filter based estimation algorithm is proposed that can provide estimation result satisfying kinematic constraint of the system, also along with a semi-distributed version of the algorithm to endow with system scalability. Lastly, CPG-based motion generation framework is presented that can generate natural biomimetic motion, and by exploiting the inverse CPG model obtained with machine learning method, it becomes possible to generate certain desired motion while still making CPG generated natural motion.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„ํ–‰ ์Šค์ผˆ๋ ˆํ†ค ์‹œ์Šคํ…œ LASDRA (large-size aerial skeleton with distributed rotor actuation) ์˜ ๊ตฌํ˜„์„ ์œ„ํ•ด ์š”๊ตฌ๋˜๋Š” ํ•ต์‹ฌ ๊ธฐ๋ฒ•๋“ค์„ ์ œ์•ˆํ•˜๋ฉฐ, ์ด๋ฅผ ์‹ค์ œ LASDRA ์‹œ์Šคํ…œ์˜ ์‹ค์™ธ ๋น„ํ–‰์„ ํ†ตํ•ด ๊ฒ€์ฆํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ 1) ์ „๋ฐฉํ–ฅ์œผ๋กœ ํž˜๊ณผ ํ† ํฌ๋ฅผ ๋‚ผ ์ˆ˜ ์žˆ๊ณ  ์ถฉ๋ถ„ํ•œ ๊ฐ€์šฉ ๋ Œ์น˜๊ณต๊ฐ„์„ ๊ฐ€์ง„ ๋งํฌ ๋ชจ๋“ˆ, 2) ๋†’์€ ์ž์œ ๋„์˜ ๋‹ค๊ด€์ ˆ๊ตฌ์กฐ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์œ„์น˜ ๋ฐ ์ž์„ธ ์ถ”์ • ์•Œ๊ณ ๋ฆฌ์ฆ˜, 3) ์ž์—ฐ์Šค๋Ÿฌ์šด ์›€์ง์ž„์„ ๋‚ด๋Š” ๋™์‹œ์— ์ „์ฒด ์‹œ์Šคํ…œ์ด ์†๋„, ๊ฐ์†๋„ ๋“ฑ ์›ํ•˜๋Š” ์›€์ง์ž„์„ ๋‚ด๋„๋ก ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ์…˜ ์ƒ์„ฑ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์šฐ์„  ๋งํฌ ๋ชจ๋“ˆ์˜ ๋””์ž์ธ์„ ์œ„ํ•ด ์ „๋ฐฉํ–ฅ์œผ๋กœ ๋ณด์žฅ๋˜๋Š” ํž˜๊ณผ ํ† ํฌ์˜ ํฌ๊ธฐ๋ฅผ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๊ตฌ์† ์ตœ์ ํ™”๋ฅผ ์‚ฌ์šฉํ•˜๊ณ , ์‹ค์ œ ์ ์šฉ๊ฐ€๋Šฅํ•œ ํ•ด๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด ๋ช‡๊ฐ€์ง€ ๊ตฌ์†์กฐ๊ฑด(๋กœํ„ฐ ๊ฐ„ ๊ณต๊ธฐ ํ๋ฆ„ ๊ฐ„์„ญ์˜ ํšŒํ”ผ ๋“ฑ)์„ ๊ณ ๋ คํ•œ๋‹ค. ๋˜ํ•œ ์„ผ์„œ๊ฐ€ ์—†๋Š” ์•ก์ธ„์—์ดํ„ฐ๋กœ ์–‘๋ฐฉํ–ฅ ์ถ”๋ ฅ์„ ๋‚ด๋Š” ๊ฒƒ์—์„œ ์•ผ๊ธฐ๋˜๋Š” ESC ์œ ๋ฐœ ํŠน์ด์  (ESC-induced singularity) ์ด๋ผ๋Š” ๋ฌธ์ œ๋ฅผ ์ฒ˜์Œ์œผ๋กœ ์†Œ๊ฐœํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์„ ํƒ์  ๋งตํ•‘ (selective mapping) ์ด๋ผ๋Š” ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ „์ฒด LASDRA ์‹œ์Šคํ…œ์˜ ์ƒํƒœ์ถ”์ •์„ ์œ„ํ•ด ์‹œ์Šคํ…œ์˜ ๊ธฐ๊ตฌํ•™์  ๊ตฌ์†์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋„๋ก ๊ตฌ์† ์นผ๋งŒ ํ•„ํ„ฐ ๊ธฐ๋ฐ˜์˜ ์ƒํƒœ์ถ”์ • ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ , ์‹œ์Šคํ…œ ํ™•์žฅ์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ๋ฐ˜ ๋ถ„์‚ฐ (semi-distributed) ๊ฐœ๋…์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ•จ๊ป˜ ์ œ์‹œํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ž์—ฐ์Šค๋Ÿฌ์šด ์›€์ง์ž„์˜ ์ƒ์„ฑ์„ ์œ„ํ•˜์—ฌ CPG ๊ธฐ๋ฐ˜์˜ ๋ชจ์…˜ ์ƒ์„ฑ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•˜๋ฉฐ, ๊ธฐ๊ณ„ ํ•™์Šต ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด CPG ์—ญ์—ฐ์‚ฐ ๋ชจ๋ธ์„ ์–ป์Œ์œผ๋กœ์จ ์ „์ฒด ์‹œ์Šคํ…œ์ด ์›ํ•˜๋Š” ์›€์ง์ž„์„ ๋‚ผ ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค.1 Introduction 1 1.1 Motivation and Background 1 1.2 Research Problems and Approach 3 1.3 Preview of Contributions 5 2 Omni-Directional Aerial Robot 7 2.1 Introduction 7 2.2 Mechanical Design 12 2.2.1 Design Description 12 2.2.2 Wrench-Maximizing Design Optimization 13 2.3 System Modeling and Control Design 20 2.3.1 System Modeling 20 2.3.2 Pose Trajectory Tracking Control 22 2.3.3 Hybrid Pose/Wrench Control 22 2.3.4 PSPM-Based Teleoperation 24 2.4 Control Allocation with Selective Mapping 27 2.4.1 Infinity-Norm Minimization 27 2.4.2 ESC-Induced Singularity and Selective Mapping 29 2.5 Experiment 38 2.5.1 System Setup 38 2.5.2 Experiment Results 41 2.6 Conclusion 49 3 Pose and Posture Estimation of an Aerial Skeleton System 51 3.1 Introduction 51 3.2 Preliminary 53 3.3 Pose and Posture Estimation 55 3.3.1 Estimation Algorithm via SCKF 55 3.3.2 Semi-Distributed Version of Algorithm 59 3.4 Simulation 62 3.5 Experiment 65 3.5.1 System Setup 65 3.5.2 Experiment of SCKF-Based Estimation Algorithm 66 3.6 Conclusion 69 4 CPG-Based Motion Generation 71 4.1 Introduction 71 4.2 Description of Entire Framework 75 4.2.1 LASDRA System 75 4.2.2 Snake-Like Robot & Pivotboard 77 4.3 CPG Model 79 4.3.1 LASDRA System 79 4.3.2 Snake-Like Robot 80 4.3.3 Pivotboard 83 4.4 Target Pose Calculation with Expected Physics 84 4.5 Inverse Model Learning 86 4.5.1 LASDRA System 86 4.5.2 Snake-Like Robot 89 4.5.3 Pivotboard 90 4.6 CPG Parameter Adaptation 93 4.7 Simulation 94 4.7.1 LASDRA System 94 4.7.2 Snake-Like Robot & Pivotboard 97 4.8 Conclusion 101 5 Outdoor Flight Experiment of the F-LASDRA System 103 5.1 System Setup 103 5.2 Experiment Results 104 6 Conclusion 111 6.1 Summary 111 6.2 Future Works 112Docto

    Random finite set filters for superpositional sensors

    Get PDF
    The multiโ€“object filtering problem is a generalization of the wellโ€“known singleโ€“ object filtering problem. In essence, multiโ€“object filtering is concerned with the joint estimation of the unknown and timeโ€“varying number of objects and the state of each of these objects. The filtering problem becomes particular challenging when the number of objects cannot be inferred from the collected observations and when no association between an observation and an object is possible. A rather new and promising approach to multiโ€“object filtering is based on the principles of finite set statistics (FISST). FISST is a methodology, originally proposed by R. Mahler, that allows the formulation of the multiโ€“object filtering problem in a mathematical rigorous way. One of the main building blocks of this methodology are random finite sets (RFSs), which are essentially finite set (FS) โ€“ valued random variables (RVs). Hence, a RFS is a RV which is not only random in the values of each element but also random in the number of elements of the FS. Under the premise that the observations are generated by detectionโ€“type sensors, many practical and efficient multiโ€“object filters have been proposed. In general, detectionโ€“type sensors are assumed to generate observations that either originate from a single object or are false alarms. While this is a reasonable assumption in many multiโ€“object filtering scenarios, this is not always the case. Central to this thesis is another type of sensors, the superposition (SPS)โ€“type sensors. Those types of sensors are assumed to generate only one single observation that encapsulates the information about all the objects in the monitored area. More specifically, a single SPS observation is comprised out of the additive contribution of all the observations which would be generated by each object individually. In this thesis multiโ€“object filters for SPSโ€“type sensors are derived in a formal mathematical manner using the methodology of FISST. The first key contribution is a formulation of a SPS sensor model that, alongside errors like sensor noise, accounts for the fact that an object might not be visible to a sensor due to being outside of the sensorโ€™s restricted field of view (FOV) or because it is occluded by obstacles. The second key contribution is the derivation of multiโ€“object Bayes filter for SPS sensors that incorporates the aforementioned SPS sensor model. The third key contribution is the formulation of a filter variant that incorporates a multiโ€“object multiโ€“Bernoulli distribution as underlying multiโ€“object state distribution, thus providing a multiโ€“object multiโ€“Bernoulli (MeMBer) filter variant for SPSโ€“type sensors. As the stated variant turns out not to be conjugate, two approximations to the exact solution are given. The fourth key contribution is the derivation of computationally tractable implementations of the SPS MeMBer filters
    corecore