240,950 research outputs found

    A computer vision system for the classification of moving object

    Get PDF
    The aim of this research is to produce a system that can detect the moving object and classify it into three classes: “Humans, Vehicle and Animals”. Using fixed video camera in outdoors environment, the system will capture the images and digitize them using (Piccolo Pro II) frame grabber at a rate of 25 frames per second. The Background Subtraction technique has been employed in the work as it is able to provide the most complete feature for data. However, it is extremely sensitive to dynamic changes like changing of illumination. Background Subtraction is done by taking the differenc e between any frame and the background in detecting the Moving Object. In order to reduce the effect of noise pixels resulting from the Background Subtraction operation, a number of pre-processing methods have been applied on the detected moving object. These preprocessing operations involve the use of median filter as well as morphological filters. Then the outline of the object will be extracted using border extraction technique. The classification makes use of both the shape and the dynamic features of the objects. In increasing the performance of the classification, all features are sequentially arranged so that the goal of this research is to be achieved. In this work, the performance achieved is 93% for class human, 93% for class vehicle and 64% for class animal

    A novel application of a microaccelerometer for target classification

    Full text link
    This paper presents a novel method of target classification by means of a microaccelerometer. Its principle is that the seismic signals from moving vehicle targets are detected by a microaccelerometer, and targets are automatically recognized by the advanced signal processing method. The detection system based on the microaccelerometer is small in size, light in weight, has low power consumption and low cost, and can work under severe circumstances for many different applications, such as battlefield surveillance, traffic monitoring, etc. In order to extract features of seismic signals stimulated by different vehicle targets and to recognize targets, seismic properties of typical vehicle targets are researched in this paper. A technique of artificial neural networks (ANNs) is applied to the recognition of seismic signals for vehicle targets. An improved back propagation (BP) algorithm and ANN architecture have been presented to improve learning speed and avoid local minimum points in error curve. The improved BP algorithm has been used for classification and recognition of seismic signals of vehicle targets in the outdoor environment. Through experiments, it can be proven that target seismic properties acquired are correct, ANN is effective to solve the problem of classification and recognition of moving vehicle targets, and the microaccelerometer can be used in vehicle target recognition. <br /

    Optimized HOG for on-road video based vehicle verification

    Get PDF
    Vision-based object detection from a moving platform becomes particularly challenging in the field of advanced driver assistance systems (ADAS). In this context, onboard vision-based vehicle verification strategies become critical, facing challenges derived from the variability of vehicles appearance, illumination, and vehicle speed. In this paper, an optimized HOG configuration for onboard vehicle verification is proposed which not only considers its spatial and orientation resolution, but descriptor processing strategies and classification. An in-depth analysis of the optimal settings for HOG for onboard vehicle verification is presented, in the context of SVM classification with different kernels. In contrast to many existing approaches, the evaluation is realized in a public and heterogeneous database of vehicle and non-vehicle images in different areas of the road, rendering excellent verification rates that outperform other similar approaches in the literature

    Vehicle classification and speed estimation using Computer Vision techniques

    Get PDF
    In this work, we implement a real-time vehicle classification and speed estimation system and apply it to videos acquired from traffic cameras installed in highways. In this approach we: a) Detect moving vehicles through backgroundforeground segmentation techniques. b) Compare different supervised classifiers (e.g. artificial neural networks) for vehicle classification into categories: (car, motorcycle, van, and bus/truck). c) Apply a calibration method to georeference vehicles using satellite images. d) Estimate vehicles speed per class using feature tracking and nearest neighbors algorithms.Facultad de Ingenierí

    Vehicle type classification from visual-based dimension estimation

    Get PDF
    This paper presents a visual-based dimension estimation method for vehicle type classification. Our method extracts moving vehicles from traffic image sequences and fits them with a simple deformable vehicle model. Using a set of coordination mapping functions derived from a calibrated camera model and relying on a shadow removal method, vehicle's width, length and height are estimated. Our experimental tests show that the modeling method is effective and the estimation accuracy is sufficient for general vehicle type classification.published_or_final_versio

    Moving Vehicle Recognition and Classification based on Time Domain Approach

    Get PDF
    AbstractDifferentially Hearing Ability Enabled (DHAE) community cannot discriminate the sound information from a moving vehicle approaching from their behind. This research work is mainly focused on recognition of different vehicles and its position using noise emanated from the vehicle A simple experimental protocol has been designed to record the sound signal emanated from the moving vehicle under different environment conditions and also at different vehicle speed Autoregressive modeling algorithm is used for the analysis to extract the features from the recorded vehicle noise signal. Probabilistic neural network (PNN) models are developed to classify the vehicle type and its distance. The effectiveness of the network is validated through stimulation

    Simultaneous fusion, classification, andtraction of moving obstacles by LIDAR and camera using Bayesian algorithm

    Get PDF
    In the near future, preventing collisions with fixed or moving, alive, and inanimate obstacles will appear to be a severe challenge due to the increased use of Unmanned Ground Vehicles (UGVs). Light Detection and Ranging (LIDAR) sensors and cameras are usually used in UGV to detect obstacles. The definite tracing and classification of moving obstacles is a significant dimension in developed driver assistance systems. It is believed that the perceived model of the situation can be improved by incorporating the obstacle classification. The present study indicated a multi-hypotheses monitoring and classifying approach, which allows solving ambiguities rising with the last methods of associating and classifying targets and tracks in a highly volatile vehicular situation. This method was tested through real data from various driving scenarios and focusing on two obstacles of interest vehicle, pedestrian.In the near future, preventing collisions with fixed or moving, alive, and inanimate obstacles will appear to be a severe challenge due to the increased use of Unmanned Ground Vehicles (UGVs). Light Detection and Ranging (LIDAR) sensors and cameras are usually used in UGV to detect obstacles. The definite tracing and classification of moving obstacles is a significant dimension in developed driver assistance systems. It is believed that the perceived model of the situation can be improved by incorporating the obstacle classification. The present study indicated a multi-hypotheses monitoring and classifying approach, which allows solving ambiguities rising with the last methods of associating and classifying targets and tracks in a highly volatile vehicular situation. This method was tested through real data from various driving scenarios and focusing on two obstacles of interest vehicle, pedestrian

    Fusion Framework for Moving-Object Classification

    No full text
    International audiencePerceiving the environment is a fundamental task for Advance Driver Assistant Systems. While simultaneous localization and mapping represents the static part of the environment, detection and tracking of moving objects aims at identifying the dynamic part. Knowing the class of the moving objects surrounding the vehicle is a very useful information to correctly reason, decide and act according to each class of object, e.g. car, truck, pedestrian, bike, etc. Active and passive sensors provide useful information to classify certain kind of objects, but perform poorly for others. In this paper we present a generic fusion framework based on Dempster-Shafer theory to represent and combine evidence from several sources. We apply the proposed method to the problem of moving object classification. The method combines information from several lists of moving objects provided by different sensor-based object detectors. The fusion approach includes uncertainty from the reliability of the sensors and their precision to classify specific types of objects. The proposed approach takes into account the instantaneous information at current time and combines it with fused information from previous times. Several experiments were conducted in highway and urban scenarios using a vehicle demonstrator from the interactIVe European project. The obtained results show improvements in the combined classification compared with individual class hypothesis from the individual detector modules
    corecore