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Vehicle Type Classification from Visual-Based 
Dimension Estimation 

Andrew H. S. Lai, Member, IEEE, George S. K. Fung and Nelson H. C. Yung, Senior Member, IEEE 

Abstract-This paper presents a visual-based dimension 
estimation method for vehicle type classification. Our method 
extracts moving vehicles from traffic image sequences and fits 
them with a simple deformable vehicle model. Using a set of 
coordination mapping functions derived from a calibrated 
camera model and relying on a shadow removal method, 
vehicle’s width, length and height are estimated. Our 
experimental tests show that the modeling method is effective 
and the estimation accuracy is sufficient for general vehicle 
type classification. 

Index Terms-- vehicle modeling, shadow removal, camera 
calibration, dimension estimation 

I. INTRODUCTION 

Vehicle type classification is a primary goal of most traffic 
surveillance tasks [I-31. In the past, it is mainly employed 
in auto-toll systems to determine the charge for different 
types of vehicle. Traditional methods employ buried 
inductive loops and/or axle sensors to measure the length 
and the number of axles of the vehicles [ 1-41, Froin that, 
more than I O  types ofvehicle can be distinguished, e.g. 
motorcycle, car, van, bus, truck, truck+trailer and etc. On 
the other hand, large-scale deployment of traffic 
surveillance cameras and rapid development of image 
processing hardware and software has drawn the attention 
of using visual-based methods for vehicle type 
classification [5-71. The major advantage of visual-based 
methods is that no buried inductive loops or axle sensor is 
required, i.e. no major civil work. Therefore, it is more 
flexible and can be massively deployed with the 
surveillance cameras. 

In visual-based methods, vehicle models are usually used to 
describe the vehicles. Vehicle models can be as simple as a 
bounding box [SI or can be as coinplex as a detail 
deformable model [9-IO]. In theory, once the vehicle is 
modeled, vehicle length can be estimated, which can then 
be used to classify the vehicle type. In practice, the 
accuracy of such approach is hindered by three factors. The 
first factor is how the vehicle is inodeled. A inore coinplex 
model tends to give inore accurate estimation but demands 
more computation resource, whereas simple model tends to 
be less accurate. In general, a modeling method that can fit 
the vehicle in all orientation is necessary. The second factor 

The authors are with the Laboratory for Intelligent Transportation 
Systems Research, The University of Hong Kong, Pokfulam Road, Hong 
Kong. Email: hslai@eee.hku.hk. 

is that vehicle shadow is a inajor issue needs to be resolved. 
A good shadow removal algorithm is essential in this case. 
The third factor is that the accuracy in determining the real- 
world diinensions froin the 2D image coordinates is critical. 
Therefore, a realistic camera model and accuracy 
coordination mapping functions are inevitable. 

In this paper, we propose a vehicle dimensions estimation 
method for vehicle type classification. In the next section, 
the methodology of the proposed method is presented. 
Then, the camera model employed is described in section 
111. In section IV, the procedure to extract binary vehicle 
inask is described. The vehicle modeling and dimensions 
estimation methods are detailed in section V and section V1. 
Section VI1 evaluated a number of experimental results. 
Finally, we conclude our method in section VIII. 

11. METHODOLOGY 
The concept of the proposed method is to fit a 2D 
projection of a simple 3D model on a binary representation 
of the vehicle extracted froin the traffic image sequence, 
froin which dimension is determined. This binary 
representation is called a vehicle mask. The vehicle inask is 
extracted by subtracting the traffic image sequence with an 
estimated stationary background [ 1 I ] .  After that, a shadow 
removal inethod is employed to remove any cast shadow 
extracted together with the vehicle mask [12]. Then, vchicle 
modeling is performed in 2D. In order to do this, a 
calibrated camera model is used to provide a mapping 
between the 3D world coordinates and the 2D image 
coordinates [ 131. Lastly, vehicle dimension including 
width, length and height are calculated in 3D world 
coordinates. Froin the vehicle dimension, vehicles arc 
classified into their respective types. Fig. 1 depicts the 
conceptual diagram of the proposed method. 

Background 
estimation 

Camera 
parameters 

Fig. 1 Conceptual diagram of the  proposed method. 
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111. CAMERA MODEL 
Fig. 2 depicts the camera model employed. This model can 
suit different camera setting and orientations [13]. The 
relationship between the image coordinates and the world 
coordinates can be defined in terms of pan angle p ,  tilt 
angle t, swing angle s, focal lengthf; camera distance 1. 

Z 

t 

f. 

XJ  

Fig. 2 Camera model. 

+ yQ (- sin p sin s - cos p sin t cos) 

Nonnally, some of these camera parameters are unknown 
because of possible pan-tilt-zoom actions. However, these 
parameters must be known in order to determine the 
mapping functions between the 2D image coordinates and 
the 3D world coordinates. Therefore, the following 
paragraphs describe how they are estimated. 

The forward mapping, @, of a point, Q = ( X Q ,  Y Q , Z Q ) ,  in 

thc world coordinates to a point, q = (x,, y , )  , from the 
image coordinates is defined as 

q =@,(a>, 
where 

.f 

x =- 
" -x, 

~ ~ ( c o s p c o s s  +s inps in ts ins)  

+ yQ (sin p coss - cos p sin t sin s) 

+ ZQ cost sins 

in pcost + YQ cospcost +zQ sint + I  ' 
- 

(xQ (- cos p sin s + sin p sin t cos s)\ 

where 

xe = 
xq cost sins + y4 cost cos+ f sin t 

' 

YQ = 
x,  cost sins + y ,  cost cos+ f sin t 

(4) 
and ZQ is the assumed height of point Q in world 

coordinates. If point Q lies on the ground, ZQ is becomes 

zero. 

The calibration of the camera is achieved by choosing a 
rectangle ABCD from the traffic image as depicted in Fig. 
3, which can be readily determined by the road lane [ 131. 

Fig 3 Rectangle ABCD for camera calibration. 

- -  
In 3D, it is reasonable to assume that ABIICD and 

ACII BD , where rectangle ABCD satisfies Eqt. (5). 
- -  

where w is the width of the road and ( X i , q )  is the world 
coordinate of the corners, with i = A ,  B,C, D . By 
substituting Eqt. (4) into Eqt. (5), we have 5 equations to 
solve p ,  t ,  s, f and 1. 

Iv. BINARY VEHICLE MASK 

We employ the background subtraction approach as given 
in [ 1 11 to obtain the vehicle masks of the moving v e h i c h  
in the traffic image sequence. First of all, a stationary 
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background image (without vehicles on the road) is 
estimated from the traffic image sequence. Fig. 4a depicts a 
typical traffic image and its corresponding estimated 
background image (Fig. 4b). By taking the difference 
between the background image and the traffic image 
sequence, we have a moving vehicle extracted as depicted 
in Fig. 4c. However, as the color and intensity of the 
vehicle shadow is also different from the background, it is 
also extracted as part of the vehicle. If the shadow is not 
removed, it will affect the accuracy of vehicle modeling and 
hence introduce huge error in the estimated vehicle 
dimension. On this regard, the shadow is removed by 
applying a shadow removal algorithm [ 121. In essence, by 
realizing the various characteristics of shadow in 
luminance. chrominance, and gradient density, a shadow 
confidence score for each pixel is calculated. It indicates the 
probability of a pixel being a cast shadow. Further analysis 
of the neighboring edge pixel density about each pixel 
enables the algorithm to classify the pixels into shadow 
pixels or non-shadow pixels. Shadow pixels are then 
discarded in this case. After this, convex hull is applied to 
the remaining non-shadow pixels, which produces the final 
vehicle inask as depicted in Fig. 4d. 

0 
U- (:, 

Fig. 4 ('a),Typical traffic image. (b) Estimated background image. (c) 
Subtraction result. (d) Final vehicle mask after shadow removal and 
convex hull. 

V. VEHICLE MODELING 
The vehicle model is a 3D cuboid wire frame projected on a 
2D plane as depicted in Fig. 5 by the solid lines, where W, L 
and EI are the width, length and height respectively. A 
model of this type inay be used to model different shapes 
and sizes of vehicles under different camera parameters. As 
the model is a 3D cuboid, any object (including a vehicle) 
may be enclosed in it by varying the dimension of the 
model. In other words, it can be easily deformed to model 
the vehicles when their sizes change in view. 

In principle. the model is characterized by 6 vertices, 
v ,  = ( x ,  ,y , )  , i = I , .  . .,6, which are parameterized such that 
their values can be adjusted to fit the vehicle mask. 

Fig. 5 Vehicle model. 

Furthermore, the model consists of 6 edges defined by the 6 
vertices, for example the edge v l v z  joins v l  and v2 . 

From Fig. 5, edges v 3 v 2  and v 5 v 6  are in parallel and 
their orientation, Bz , is parallel to the vertical axis in 3D, 
which can be determined from Eqt. (6) using the forward 
mapping. 

- 
- -  

(6a) 

- 
where E, = {O,O,l}T, which is a vertical unity vector the in 

world coordinates and e, is the corresponding vector in 

2D. For edges v J v 4  and v ,v6  , they are also in parallel 
and is more or less perpendicular to the road direction in 
3D. To obtain their orientation, 8, , the road direction, 

+ 

- -  

, in 2D is first mapped to 3D. Conceptually, by 
rotating it by n / 2  and then apply the forward mapping, 
8, for the model is obtained. To do this, first we compute 
the pseudo center-of-gravity, g, of the vehicle inask and 
compose a point, q, in 2D such that the line g q is parallel 
to ernod as depicted in Fig. 6. 

- 

vehicle mask 

Fig. 6 Obtain Ox from road direction. 

( 7 )  

where a is the length of the line, which is arbitrary. The line 
is then mapped to the 3D coordinates using Eqt. (8). 

G = CD-' (g}, (8a) 

Q=CD-'{q}. 
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The line in 3D is rotated by f about G using Eqt. (9) 
and then mapped back to the 2D coordinates using Eqt. (3). 

Then, 

- 
Because of the perspective view, edges v I v 2  and v5v4 
are parallel and along the road direction in 3D but converge 
to a vanishing point, q v  , in 2D as depicted in Fig. 7a. The 

orientations of edges v l v 2  and v 5 v 4  are labeled as O y , l  

and 0 y.2 respectively. To obtain them, first, we have to 
calculate q ,  . Recalling the rectangle ABCD used in camera 

calibration. As ABIICD and they are along the road 
direction 3D, q ,  is defined as the interception point of lines 
A B  and CD in the image coordinates. Second, we divide the 
vehicle mask into two portions along the line q,g  as 
depicted in Fig. 7b. 

- 

- -  

- 

Two extreme points, q l  and q 2 ,  on the vehicle mask with 
the largest distances from the dividing line are determined. 
From these two points, the required orientations can be 
obtained from Eqt. ( 1  2). 

0Y.l = &zl7 (1  2a) 

0 Y . 2  = 46i21. (12b) 

With all the orientations , , OY.?  and 0, 
determined, 6 edges can be fitted to the vehicle inask as 
depicted in Fig. 8. The interception points of the 6 edges 
define the model's 6 vertices. 

Fig. 8 Edges and vertices of the vehicle model obtained. 

As seen in Fig. 4d, the bottom line of the vehicle inask 
corresponds to either the front or rear bumper of the 
vehicle, which is not on the road surface in 3D. Therefore, 
edge 

Instead, we need to shift down edge v J v 4  such that it lics 
on the road surface. To do this, we need to assume a 
bumper to road surface height, bo,  as depicted in Fig. 8, 
which varies from vehicles to vehicles. Sincc i t  is 
impractical to assume the knowledge of ho , we need to 
estimate it. To do that, we measured h,) of different vehicle 
types and observed that the measured values vary at 0.2Sin 
k 0. loin. Therefore, a typical value of h, = 0.251~1 IS chosen 
in our algorithm. 

should not fit to that bottom line directly. - 

VI. DIMENSIONS ESTIMATION 

From the vertices of the vehicle model, the dimensions of 
the vehicle can be detennined by Eqt. (13). As v 3  to v5 lie 
on the road, their latitudes are zero, i.e. Z j  = 0 for 
i = 3,4,5 . 

(b) 
Fig. 7 (a) Vanishing point and orientations of the edges. (b) Division 
of vehicle mask and two extreme points. 
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In Eqt. (1 3c), we assumed that vertices v2 and v j  have the 
X and Y coordinate in 3D, i.e. X, = X ,  and Y, = Y, , while 
the Z coordinate of v2 is H, i.e. Z ,  = H . 

VII. EXPERIMENTAL RESULTS 
For evaluation purpose, three sets of traffic images of a taxi, 
a mini-bus and a double-decker were obtained froin a traffic 
image sequence. The images were taken at daytime when 
the shadows are prominent. The first set of test images is a 
taxi where one of them is depicted in Fig. 9a. Fig. 9b 
depicts the subtraction result where both the taxi and its 
shadow are extracted. ARer applying the shadow removal 
algorithm and convex hull, the final vehicle inask is 
depicted in Fig. 9c. Based on the mask, the vehicle model is 
determined as depicted in Fig. 9d. From the mask, it can be 
seen that the shadow removal algorithm removes part of the 
rear of the vehicle. It is because that area is dark and the 
edge pixel density is low. However, it does not affect the 
inodeling process much, which can be verified that the 
resulting model that fits the entire vehicle well. For the 
model, 8, and Bz are along the height and length 
orientations of the vehicle while Ox slightly deviates froin 
the width orientation of the vehicle, which is a source of 
error. 

Fig. 9 (a) Taxi. (b) Subiraction result. (c) Mask. (d) Model. 

Fig. 10 Modeling result without removing the shadow. 

Fig. 10 depicts the inodeling result if we do not apply the 
shadow removal algorithm. In this case, the shadow is mis- 
interrupted as part of the vehicle body. Therefore, the 
resulting model is much larger than the vehicle and the 
shape is not a regular cuboid in 3D. This indicates that the 
necessity of an effective shadow removal algorithm for the 

dimension estimation to be used in order for vehicle-type 
classification. 

The second set of test images is a 16 seats mini-bus as 
depicted in Fig. 1 1 a. The subtraction result and the final 
inask are depicted Figs. 11 b and 1 I C  respectively. The 
model obtained (Fig. 1 Id) in this case is better than the 
previous one visually. The shadow is removed successfully 
without affecting the vehicle body. The model fits the 
vehicle well and the orientations of the edges are close to 
the actual orientations of the vehicles. 

(c) (d) 
Fig. 11 (a) Mini-bus. (b) Subtraction result. (c) Mask. (d) Model. 

The third set of images is a double-decker bus as depicted 
in Fig. 12a. The subtraction result and the final inask are 
depicted Figs. 12b and 12c respectively. Similar results as 
in the mini-bus are obtained for the double-decker. Shadow 
is removed successfully and the vehicle model is obtained 
accordingly. From the model, the leftmost edge slightly 
deviates from the vehicle due to the inaccuracy of the 
vehicle mask extracted. 

(a (d) 
Fig. 12 (a) Bus. (b) Subtraction result. (c) Mask. (d) Model. 

To evaluate the estimation accuracy, the complete test sets 
were evaluated and their average estimated vehicle 
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dimensions from the vehicle models are compared with the 
actual dimensions obtained from the manufacturers. Table 1 
tabulates the values obtained for the taxi. Around 7.4% 
error in length estimation is encountered while the errors in 
width and height estimation are slightly above 10%. This is 
probably due to the deviation in edge orientation 
estimation. Tables 2 and 3 tabulate the values obtained for 
the mini-bus and double-decker bus. Smaller errors in 
length (-4%) and width (<3%) estimation are obtained. 
However, larger errors of > 10% for the mini-bus and >7% 
for the double-decker bus are obtained. 

1 Error I 7.42% I 10.73% I 10.85% 1 

1 Length 1 Width I Height ] 
Actual 
Estimated (avg.) 
Error 

4820 inin 1765 inin 1465 inin 
4462 inin 1575 inin 1306 inin 

7.42% 10.73% 10.85% 

Actual 
Estimated (avg.) 

1 4820 inin 1 1765 inin I 1465 inin 
I 4462 inin I 1575 inin I 1306 inin 

Table 1 Estimation result of Taxi (Toyota Crown). 

” 
Actiial 6255 inin 2025 min 2585 inm 
Estimated (avg.) 6507 inin 2082 mm 2308 inin 
Error 4.04% 2.84% 10.72% 

Table 2 Estimation result of Mini-Bus (Toyota Coaster  16seats). 

I Length 1 Width ] Height- 
I 11880 inin 1 2500 inin I 4760 inin Actual 

Estimated (avg.) 1 12408 inin 1 251 1 inin 1 4396 inm 
Error 1 4.44 ?‘a I 0.47% I 7.65% 

Table 3 Estimation result of Bus (Volvo Supe r  Olympian). 

The major source of error is the inaccuracy of the vehicle 
mask, which affect the fitness of the vehicle model directly. 
Also, the model inay not fit the vehicle perfectly due to 
sinall deviations in obtaining the orientations of the model 
edges. These can be verified from the results where the 
vehicle models are usually slightly larger than what they 
should be. It is found that the deviation is about 2 to 3 
image pixels in general. Another source of error is the 
derivation in h, . As mentioned in Section V, the derivation 
could be as large as 0.10m, which equals to 2.1% to 6.8% 
errors in height estimation. This inay explain why the errors 
in height estimation are usually large in all cases. However, 
this error will be difficult to estimate. 

I4Oo0 I 

I 12000 

10000 

i 
I 

2000 1 
O C  

4000 , 

Length 

3( 

x 

-A-- Mini-van 

k 

.. 
- - - - - - - 

1 2 3 4 5 

Fig. 12 Estimated lengths over 5 consective frames. 

Fig. 12 shows the estimated lengths ofthe three vehicles 
over 5 consecutive frames. From the graph, the variations 
of individual vehicle are small. Also, there is a prominent 
distinction in their vehicle lengths. Thus, vehicle type can 
be identified from the estimated length effectively. 

VIII. CONCLUSIONS 
In conclusion, the visual-based dimension estimation 
method as presented in this paper is an effective way for 
obtaining vehicle length for vehicle type classification. The 
merits of the method are effective shadow removal 
algorithm is employed and using simple 3D cuboid model 
that can fit any types of vehicles. The drawbacks are the 
performance is hindered by the accuracy of the vehicle 
mask and the estimated bumper to road surface height. 
According to our evaluation, the estimation accuracy in 
vehicle length is above 92.5%, and the variations in 
estimation are very small. Therefore, major vehicle types, 
from private car to mini-bus to bus or truck, can be readily 
identified from the estimated length. 
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